Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38604156

ABSTRACT

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Subject(s)
Epithelial-Mesenchymal Transition , Liver , MAP Kinase Signaling System , Smad3 Protein , Stem Cells , Transforming Growth Factor beta , Smad3 Protein/metabolism , Stem Cells/metabolism , Animals , Transforming Growth Factor beta/metabolism , MAP Kinase Signaling System/physiology , Liver/metabolism , Cell Survival/drug effects , Phosphorylation , Mice , Signal Transduction
2.
Cancer Gene Ther ; 31(4): 586-598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38267623

ABSTRACT

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Interferons , Mutation , Biomarkers, Tumor/genetics
3.
ACS Appl Mater Interfaces ; 7(5): 3420-5, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25602511

ABSTRACT

Temperature-sensitive organic nanoparticles with AIE effect were assembled in water from tetraphenylethene-based poly(N-isopropylacrylamide) (TPE-PNIPAM), which was synthesized by ATRP using TPE derivative as initiator. The size and fluorescence of TPE-PNIPAM nanoparticles can be tuned by varying the temperature. These nanoparticles can be internalized readily by HeLa cells and can be used as long-term tracer in live cells to be retained for as long as seven passages.


Subject(s)
Cell Tracking/methods , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Nanocomposites/chemistry , Organic Chemicals/chemistry , Subcellular Fractions/ultrastructure , HeLa Cells , Humans , Materials Testing , Nanocomposites/ultrastructure , Particle Size , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL