Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.224
Filter
1.
Front Vet Sci ; 11: 1390473, 2024.
Article in English | MEDLINE | ID: mdl-38835897

ABSTRACT

Objective: Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods: The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results: For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion: GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.

2.
Geroscience ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822946

ABSTRACT

Considerable uncertainty remains regarding the associations of multiple factors with brain health. We aimed to conduct an exposome-wide association study on neurodegenerative disease and neuropsychiatry disorders using data of participants from the UK Biobank. Multivariable Cox regression models with the least absolute shrinkage and selection operator technique as well as principal component analyses were used to evaluate the exposures in relation to common disorders of central nervous system (CNS). Restricted cubic splines were conducted to explore potential nonlinear correlations. Then, weighted standardized scores were generated based on the coefficients to calculate the joint effects of risk factors. We also estimated the potential impact of eliminating the unfavorable profiles of risk domains on CNS disorders using population attributable fraction (PAF). Finally, sensitivity analyses were performed to reduce the risk of reverse causality. The current study discovered the significantly associated exposures fell into six primary exposome categories. The joint effects of identified risk factors demonstrated higher risks for common disorders of CNS (HR = 1.278 ~ 3.743, p < 2e-16). The PAF varied by exposome categories, with lifestyle and medical history contributing to majority of disease cases. In total, we estimated that up to 3.7 ~ 64.1% of disease cases could be prevented.This study yielded modifiable variables of different categories and assessed their joint effects on common disorders of CNS. Targeting the identified exposures might help formulate effective strategies for maintaining brain health.

3.
Front Vet Sci ; 11: 1340591, 2024.
Article in English | MEDLINE | ID: mdl-38846786

ABSTRACT

Objective: Orchitis is a common reproductive disease of male animals, which has serious implications to human and animal reproduction. Additionally, phlorizin (PHN), a common polyphenol in apples and strawberries, has a variety of biological activities, including antioxidant, anti-inflammatory, anti-diabetic, and anti-aging activities. We aimed to determine the protective effects and potential mechanisms of PHN in lipopolysaccharide (LPS)-induced acute orchitis in mice. Method: After 21 days of PHN pretreatment, mice were injected with LPS to induce testicular inflammation, and then the changes of testicular tissue structure, expression of inflammatory factors, testosterone level, expression of testosterone-related genes, adhesion gene and protein expression were detected, and the structural changes in the intestinal flora after PHN treatment were further detected by 16SRNA. Result: Our results demonstrated that PHN treatment reduced LPS-induced testicular injury and body and testicular weight losses. The mRNA expression levels of pro-inflammatory cytokines-related genes and antioxidant enzyme activity were also decreased and elevated, respectively, by PHN administration; however, PHN treatment also reduced the LPS-induced decrease in testosterone levels in the testes. Additionally, further studies found that PHN increased the expression of marker proteins zonula occludens-1 (ZO-1) and occludin associated with the blood testosterone barrier compared with that in LPS treatment groups. To further examine the potential mechanisms of the protective effect of PHN on LPS-induced testicular injury, we compared the differences of gut microbiota compositions between the 100 mg/kg PHN treatment group and the control group using 16SRNA. Metagenomic analyses indicated that the abundances of Bacteroidetes, Muribaculaceae, Lactobacillaceae, uncultured bacterium f Muribaculaceae, and Lactobacillus in the PHN treatment group improved, while potential microbes that can induce intestinal diseases, including Verrucomicrobia, Epsilonbacteraeota, Akkermansiaceae, and Akkermansia decreased in the PHN treatment group. Conclusion: Our results indicate that PHN pretreatment might alleviate orchitis by altering the composition of gut microflora, which may provide a reference for reducing the occurrence of acute orchitis in male animals.

4.
Ultrasound Med Biol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871491

ABSTRACT

OBJECTIVE: The purpose of the study described was to establish prediction models to initially screen the beneficiary patients with unresectable hepatocellular carcinoma (HCC) in the treatment of anti-vascular endothelial growth factor (VEGF) agents plus anti-programmed cell death-1 (PD-1) antibody. METHODS: A total of 62 patients were enrolled in this study. All patients underwent ultrasound (US), color ddoppler flowing imaging (CDFI), contrast-enhanced ultrasound (CEUS) and laboratory examinations within 2 wk before the treatment. Tumor response was assessed according to mRECIST criteria. Univariate and multivariate analyses were used to select the independent predictors. US + CDFI, CEUS and FULL models were established. Three models were displayed by nomography. Receiver operating characteristic (ROC) and calibration curves were drawn to evaluate the predictive ability of models. Decision curve analysis (DCA) was used to assess the clinical utility of models. RESULTS: On univariate and multivariate analysis, the US boundary (p = 0.037), halo (p = 0.002) and CDFI (p = 0.024) were included in the US + CDFI model. CEUS boundary (p = 0.001) and washout time (p < 0.001) were included in the CEUS model. The number of lesions (p = 0.104), halo on US (p = 0.014), CDFI (p = 0.057) and washout time on CEUS (p = 0.015) were incorporated into the FULL model. The C indices of the US + CDFI, CEUS and FULL models were 0.918, 0.920 and 0.973. CEUS and FULL models yielded a good net benefit for almost all threshold probabilities. CONCLUSION: Nomograms based on US, CDFI, CEUS and clinical characteristics could help to non-invasively predict the response to treatment with anti-PD-1 antibodies plus anti-VEGF agents.

5.
Sci Rep ; 14(1): 13050, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844812

ABSTRACT

This study introduces a novel approach for synthesizing a Cu(II)-based coordination polymer (CP), {[Cu(L)(4,4´-OBA)]·H2O}n (1), using a mixed ligand method. The CP was successfully prepared by reacting Cu(NO3)2·3H2O with the ligand 3,6-bis(benzimidazol-1-yl)pyridazine in the presence of 4,4´-H2OBA, demonstrating an innovative synthesis strategy. Furthermore, a novel hydrogel composed of hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) with a porous structure was developed for drug delivery purposes. This hydrogel facilitates the encapsulation of CP1, and enables the loading of paclitaxel onto the composite to form HA/CMCS-CP1@paclitaxel. In vitro cell experiments demonstrated the promising modulation of thyroid cancer biomarker genes S100A6 and ARID1A by HA/CMCS-CP1@paclitaxel. Finally, reinforcement learning simulations were employed to optimize novel metal-organic frameworks, underscoring the innovative contributions of this study.


Subject(s)
Copper , Hydrogels , Paclitaxel , Thyroid Neoplasms , Paclitaxel/chemistry , Paclitaxel/pharmacology , Copper/chemistry , Hydrogels/chemistry , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Chitosan/chemistry , Chitosan/analogs & derivatives , Cell Line, Tumor , Hyaluronic Acid/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology
6.
Int J Biol Markers ; : 3936155241261390, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881381

ABSTRACT

PURPOSE: Gastric cancer is the most common malignancy worldwide and is the third leading cause of cancer-related deaths, urgently requiring an early and non-invasive diagnosis. Circulating extracellular vesicles may emerge as promising biomarkers for the rapid diagnosis in a non-invasive manner. METHODS: Using high-throughput small RNA sequencing, we profiled the small RNA population of serum-derived extracellular vesicles from healthy controls and gastric cancer patients. Differentially expressed microRNAs (miRNAs) were randomly selected and validated by reverse transcription-quantitative real-time polymerase chain reaction. Receiver operating characteristic curves were employed to assess the predictive value of miRNAs for gastric cancer. RESULTS: In this study, 193 differentially expressed miRNAs were identified, of which 152 were upregulated and 41 were significantly downregulated. Among the differently expressed miRNA, the expression levels of miR-21-5p, miR-26a-5p, and miR-27a-3p were significantly elevated in serum-derived extracellular vesicles of gastric cancer patients. The miR-21-5p and miR-27a-3p were closely correlated with the tumor size. Moreover, the expression levels of serum miR-21-5p and miR-26a-5p were significantly decreased in gastric cancer patients after surgery. CONCLUSIONS: The present study discovered the potential of serum miR-21-5p and miR-26a-5p as promising candidates for the diagnostic and prognostic markers of gastric cancer.

7.
Ying Yong Sheng Tai Xue Bao ; 35(4): 926-932, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884227

ABSTRACT

To provide a theoretical basis and technical support for the high-yield and high-efficiency production of wheat, we examined the effects of different tillage patterns on wheat grain yield of Jimai 22 and the physiological mechanisms in an experiment with three treatments: 14 years in rotary tillage (R), minimal and no tillage (S), and minimal and no tillage with a 2-year subsoiling interval (SS). We assessed the light interception by wheat plant canopy, the distribution of photosynthate transport, and grain yield for the three cultivation modes. The results showed that leaf area index was significantly higher for SS treatment than the other treatments at 14-28 days after anthesis. The interception rate and amount of photosynthetically active radiation in the upper and middle layers of wheat canopy were significantly higher for SS treatment than R and S treatments at 21 days after anthesis. The contribution rate of grain assimilation and the distribution proportion of 13C assimilated in grain, and the maximum and average filling rates, were the highest under SS treatment. The 1000-kernel weight for SS treatment increased by 8.7% and 9.6%, and the grain yield increased by 14.2% and 19.4% compared with R and S treatments, respectively. SS treatment significantly improved light energy utilization by wheat canopy, promoted the accumulation and transport of dry matter, increased the grain-filling rate, increased grain weight, which together contributed to the highest grain yield. Therefore, SS was the optimal tillage pattern under the conditions of this experiment.


Subject(s)
Agriculture , Biomass , Crop Production , Triticum , Triticum/growth & development , Triticum/metabolism , Agriculture/methods , Crop Production/methods , Edible Grain/growth & development , Carbon Isotopes/analysis
8.
Ying Yong Sheng Tai Xue Bao ; 35(4): 933-941, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884228

ABSTRACT

Clarifying the appropriate application rates of N, P, and K fertilizers and the physiological mechanisms of wheat under water-saving recharge irrigation in the North China Plain would provide a theoretical basis for formulating reasonable fertilization plans for high-yield and high-efficiency wheat production. We established four treatments with different amounts of nitrogen (N), phosphorus (P2O5), and potassium (K2O) application: 0, 0, and 0 kg·hm-2 (F0), 180, 75, and 60 kg·hm-2 (F1), 225, 120, and 105 kg·hm-2 (F2), and 270, 165, and 150 kg·hm-2 (F3). During the jointing and anthesis stages of wheat, the relative water content of each treatment in the 0-40 cm soil layer was replenished to 70%, to investigate the differences in wheat flag leaf photosynthetic characteristics, distribution of 13C assimilates, grain starch accumulation, and fertilizer utilization. The results showed that the relative chlorophyll content of flag leaves, photosynthetic and chlorophyll fluorescence parameters, 13C assimilate allocation in each organ, enzyme activities involved in starch synthesis, and starch accumulation in the F1 treatment were significantly higher than that in F0 treatment, which was an important physiological basis for the 20.9% increase in grain yield. The above parameters and yield in the F2 and F3 treatments showed no significant increase compared to F1 treatment, while fertilizer productivity and agronomic efficiency of N, P, and K decreased by 17.5%-58.4% and 12.7%-50.7%, respectively. Therefore, F1 could promote flag leaf photosynthetic assimilate production and grain starch accumulation under water-saving supplementary irrigation conditions, resulting in higher grain yield and fertilizer utilization efficiency.


Subject(s)
Fertilizers , Nitrogen , Phosphorus , Potassium , Starch , Triticum , Triticum/growth & development , Triticum/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Starch/metabolism , Potassium/metabolism , Potassium/analysis , Carbon Isotopes/metabolism , Carbon Isotopes/analysis , China , Edible Grain/growth & development , Edible Grain/metabolism
9.
Ying Yong Sheng Tai Xue Bao ; 35(4): 942-950, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884229

ABSTRACT

To clarify the appropriate rate of phosphorus application and physiological mechanism for promoting wheat tillering and efficient utilization of phosphorus fertilizer with supplementary irrigation, we used 'Jimai 22' wheat variety as the test material, to set up three phosphorus application treatments, including low (90 kg P2O5·hm-2, P1), medium (135 kg P2O5·hm-2, P2), and high (180 kg P2O5·hm-2, P3) application rates, with no phosphorus application as the control (P0). We increased the relative soil water content of each treatment at join-ting stage and anthesis stage to 70%, and measured the area of tiller node, the content of endogenous hormones, the number of tillers in each tiller position, photosynthetic parameters, the distribution of 13C assimilates in each stem and tiller, as well as the grain yield and partial productivity of phosphate fertilizer. The results showed that compared with P0 and P1 treatments, P2 significantly increased the area of tiller node and the trans-zeatin (tZ), the photosynthetic parameters of the uppermost expanded leaves of the main stem, the total tillers per plant, and the distribution of 13C assimilates in each tiller. The number of ears per plant was increased by 0.51 and 0.36, and grain yield was increased by 40.3% and 13.2%, respectively. In P3 treatment, the number of tillers increased, but the panicles per plant, and the grain yield and phosphate fertilizer partial productivity decreased. Our results suggested that the moderate phosphorus treatment (135 kg·hm-2) under supplementary irrigation was suitable for high yield and high efficiency of wheat.


Subject(s)
Agricultural Irrigation , Carbon Isotopes , Fertilizers , Phosphorus , Triticum , Triticum/growth & development , Triticum/metabolism , Phosphorus/metabolism , Agricultural Irrigation/methods , Carbon Isotopes/analysis
10.
Eye Contact Lens ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695745

ABSTRACT

OBJECTIVES: To explore the potential of artificial intelligence (AI) to assist prescription determination for orthokeratology (OK) lenses. METHODS: Artificial intelligence algorithm development followed by a real-world trial. A total of 11,502 OK lenses fitting records collected from seven clinical environments covering major brands. Records were randomly divided in a three-way data split. Cross-validation was used to identify the most accurate algorithm, followed by an evaluation using an independent test data set. An online AI-assisted system was implemented and assessed in a real-world trial involving four junior and three senior clinicians. RESULTS: The primary outcome measure was the algorithm's accuracy (ACC). The ACC of the best performance of algorithms to predict the targeted reduction amplitude, lens diameter, and alignment curve of the prescription was 0.80, 0.82, and 0.83, respectively. With the assistance of the AI system, the number of trials required to determine the final prescription significantly decreased for six of the seven participating clinicians (all P <0.01). This reduction was more significant among junior clinicians compared with consultants (0.76±0.60 vs. 0.32±0.60, P <0.001). Junior clinicians achieved clinical outcomes comparable to their seniors, as 93.96% (140/149) and 94.44% (119/126), respectively, of the eyes fitted achieved unaided visual acuity no worse than 0.8 ( P =0.864). CONCLUSIONS: AI can improve prescription efficiency and reduce discrepancies in clinical outcomes among clinicians with differing levels of experience. Embedment of AI in practice should ultimately help lessen the medical burden and improve service quality for myopia boom emerging worldwide.

11.
Heliyon ; 10(10): e31197, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38807876

ABSTRACT

Electroacupuncture (EA) is an effective alternative for the treatment of functional dyspepsia (FD). It reduces low-grade duodenal inflammation and improves the symptoms of FD by downregulating the expression of NF-κB p65 and NLRP3, but its mechanism needs to be elucidated. To examine the regulatory effect of electroacupuncture (EA) on intestinal flora and NF-κB p65/NLRP3 pyroptosis pathway in FD rats. The FD rat model was established via multi-factor stress intervention for two weeks. The rats were randomly divided into the NC group, model group, NF-kB inhibitor group (NF-κB inhibitor BAY 11-7082 was administered), EA group, and EA + NF-kB inhibitor group. After 14 days of treatment, the rats were sacrificed, and the protein and mRNA levels of NF-κB p65, IκB, and NLRP3 in the duodenum were evaluated by Western blotting assays and real-time fluorescent quantitative PCR. The Illumina MiSeq sequencing platform was used to analyze the V4 region of the 16S rRNA gene of intestinal flora and predict functional genes. The concentration of short-chain fatty acids (SCFAs) in feces was assessed by metabolomics. EA can decrease low-grade duodenal inflammation and promote gastrointestinal motility in FD rats. This effect is mediated by inhibition of the NF-κB p65/NLRP3 pyroptosis pathway, an increase in the alpha and beta diversity of gut microbiota in the duodenum, an increase in the abundance of beneficial bacteria at the phylum and genus levels, and an increase in the content of SCFAs. The protective effect of EA against FD might involve multiple hierarchy and pathways. EA may remodel intestinal flora by inhibiting the NF-κB p65/NLRP3 pyroptosis pathway, thereby improving low-grade duodenal inflammation in FD rats.

12.
Epilepsia ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752783

ABSTRACT

OBJECTIVE: Posttraumatic epilepsy (PTE) significantly impacts morbidity and mortality, yet local PTE data remain scarce. In addition, there is a lack of evidence on cognitive comorbidity in individuals with PTE in the literature. We sought to identify potential PTE predictors and evaluate cognitive comorbidity in patients with PTE. METHODS: A 2-year retrospective cohort study was employed, in which adults with a history of admission for traumatic brain injury (TBI) in 2019 and 2020 were contacted. Three hundred one individuals agreed to participate, with a median follow-up time of 30.75 months. The development of epilepsy was ascertained using a validated tool and confirmed by our neurologists during visits. Clinical psychologists assessed the patients' cognitive performance. RESULTS: The 2-year cumulative incidence of PTE was 9.3% (95% confidence interval [CI] 5.9-12.7). The significant predictors of PTE were identified as a previous history of brain injury [hazard ratio [HR] 4.025, p = .021], and intraparenchymal hemorrhage (HR: 2.291, p = .036), after adjusting for other confounders. TBI patients with PTE performed significantly worse on the total ACE-III cognitive test (73.5 vs 87.0, p = .018), CTMT (27.5 vs 33.0, p = .044), and PSI (74.0 vs 86.0, p = .006) than TBI patients without PTE. A significantly higher percentage of individuals in the PTE group had cognitive impairment, compared to the non-PTE group based on ACE-III (53.6% vs 46.4%, p = .001) and PSI (70% vs 31.7%, p = .005) scores at 2 years post-TBI follow-up. SIGNIFICANCE: This study emphasizes the link between TBI and PTE and the chance of developing cognitive impairment in the future. Clinicians can target interventions to prevent PTE by identifying specific predictors, which helps them make care decisions and develop therapies to improve patients' quality of life.

13.
Environ Pollut ; 352: 124117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714231

ABSTRACT

Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.


Subject(s)
Fresh Water , Geologic Sediments , Mercury , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Mercury/metabolism , Methylation , Water Pollutants, Chemical/metabolism , Methylmercury Compounds/metabolism , Seawater/chemistry , Seawater/microbiology , Bacteria/genetics , Bacteria/metabolism , Metagenome
14.
Article in English | MEDLINE | ID: mdl-38821004

ABSTRACT

BACKGROUND: Poisonings caused by plant toxins and mycotoxins occur frequently, which do great harm to human health and social public health safety. When a poisoning incident occurs, biological samples are commonly be used to conduct the detection of toxic substances and their metabolites for targeted clinical treatment and incident analysis. OBJECTIVE: To establish an efficient and accurate analysis method of 39 phytotoxins and mycotoxins in blood and urine by high performance liquid chromatography quadrupole tandem orbitrap mass spectrometry (HPLC-Orbitrap MS). METHOD: After 3 mL of methanol being added to 1 mL blood and urine respectively for extraction and protein precipitation, the supernatant was injected into HPLC-Orbitrap MS for analysis. The phytotoxins and mycotoxins were separated by Hypersil GOLD PFP column with gradient elution using methanol-5 mmol/L ammonium acetate as mobile phase. The data were collected in ESI positive ion mode using Full MS/dd-MS2 for mass spectrometry detection. RESULT: The mass database of 39 phytotoxins and mycotoxins was developed, and accurate qualitative analysis can be obtained by matching with the database using the proposed identification criteria. Limit of detections (LODs) were 1.34 × 10-4 âˆ¼ 1.92 ng/mL and 1.92 × 10-4 âˆ¼ 9.80 ng/mL for blood and urine samples, respectively. Limits of quantification (LOQ) of toxins in blood and urine ranged from 4.47 × 10-4 âˆ¼ 6.32 ng/mL and 6.39 × 10-4 âˆ¼ 32.67 ng/mL, respectively. Intra-day relative standard deviations (RSDs) were 0.79 % âˆ¼ 10.90 %, and inter-day RSDs were 1.08 % âˆ¼ 18.93 %. The recoveries can reach 90 % âˆ¼ 110 % with matrix matching calibration curves. CONCLUSION: The established method is simple and rapid to operate, which can complete the sample analysis within 30 min, providing technical support for clinical poisoning treatment and public health poisoning analysis.


Subject(s)
Limit of Detection , Mycotoxins , Mycotoxins/urine , Mycotoxins/blood , Humans , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Linear Models , Tandem Mass Spectrometry/methods
15.
Water Res ; 257: 121715, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728779

ABSTRACT

High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.


Subject(s)
Oxidation-Reduction , Chlorides/chemistry , Chlorine/chemistry , Metals/chemistry , Halogenation , Water Pollutants, Chemical/chemistry , Wastewater/chemistry
16.
J Matern Fetal Neonatal Med ; 37(1): 2337723, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38637274

ABSTRACT

OBJECTIVE: The objective of this study is to explore the functions and mechanisms of the LncRNA-KCNQ1OT1/miR-29a-3p/SOCS3 molecular pathway in the context of unexplained recurrent spontaneous abortion (URSA). METHODS: We conducted qRT-PCR to assess the levels of LncRNA-KCNQ1OT1, miR-29a-3p, and SOCS3 in both abortion tissues from women who experienced URSA and healthy early pregnant women. A dual-luciferase assay was employed to investigate whether miR-29a-3p targets SOCS3. Furthermore, RNA IP and RNA Pull-Down assays were employed to confirm the interaction between KCNQ1OT1 and SOCS3 with miR-29a-3p. RNA FISH was used to determine the cellular localization of KCNQ1OT1. Additionally, trophoblast cells (HTR8/SVneo) were cultured and the CCK-8 assay was utilized to assess cell proliferation, while flow cytometry was employed to analyze cell apoptosis. RESULTS: Compared to abortion tissues obtained from healthy early pregnant individuals, those from women who experienced URSA displayed a notable downregulation of KCNQ1OT1 and SOCS3, accompanied by an upregulation of miR-29a-3p. Suppression of KCNQ1OT1 resulted in the inhibition of cell proliferation and the facilitation of apoptosis in HTR8/SVneo cells. Our findings suggest that KCNQ1OT1 may exert a regulatory influence on SOCS3 through a competitive binding mechanism with miR-29a-3p. Notably, KCNQ1OT1 exhibited expression in both the cytoplasm and nucleus, with a predominant localization in the cytoplasm. Furthermore, we observed a negative regulatory relationship between miR-29a-3p and SOCS3, as the miR-29a-3p mimic group demonstrated significantly reduced cell proliferation and an increased rate of apoptosis when compared to the negative control (NC mimic) group. Additionally, the SOCS3 Vector group exhibited a substantial improvement in proliferation capability and a marked reduction in the apoptosis rate in comparison to the NC Vector group. The miR-29a-3p mimic + SOCS3 Vector group demonstrated a remarkable enhancement in proliferation and a reduction in apoptosis when compared to the miR-29a-3p mimic group. CONCLUSION: The competitive binding of miR-29a-3p to LncRNA-KCNQ1OT1 appears to result in the elevation of SOCS3 expression, consequently fostering the proliferation of trophoblast cells while concomitantly suppressing apoptosis.


Subject(s)
Abortion, Habitual , MicroRNAs , RNA, Long Noncoding , Female , Humans , Pregnancy , Abortion, Habitual/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 403-409, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660905

ABSTRACT

Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates. Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity. This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes. The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes, and corresponding reference ranges will be established. The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance, with altitude gradients divided into 4 categories: 800 m, 1 900 m, 2 400 m, and 3 500 m, with an anticipated sample size of 170 neonates per altitude gradient. This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.


Subject(s)
Altitude , Brain , Electroencephalography , Oxygen , Humans , Infant, Newborn , Brain/metabolism , Oxygen/metabolism , Spectroscopy, Near-Infrared , Prospective Studies
18.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592766

ABSTRACT

α-Linolenic acid (ALA) is an important nutrient component in rapeseed oil, and rapeseed breeders want to either restrain or enhance the function of fatty acid desaturases (FADs) in the ALA biosynthesis pathway. To determine the reason for the upregulation of rapeseed BnFAD genes in two high-ALA accessions, R8Q10 and YH25005, we compared their transcriptome profiles in the seed at 24 days after pollination (DAP) with those of two low-ALA lines, A28 and SW. The expression levels of twenty-eight important genes in the seed samples at 20, 27, and 34 DAP were also investigated using an RT-qPCR. The expression levels of genes involved in flavonoid and proanthocyanidin synthesis, including BnCHS, BnCHI, BnDFR, BnFLS1, BnLDOX, BnBAN, BnTT10, and BnTT12 and genes encoding the transcription factors BnTT1, BnTT2, BnTT8, and BnTT16 were lower in R8Q10 and YH25005 than in A28 and SW. The expression levels of genes encoding master transcription factors in embryo development, such as BnLEC1, BnABI3, BnFUS3, BnL1L, BnAREB3, and BnbZIP67, were elevated significantly in the two high-ALA accessions. Combined with previous results in the Arabidopsis and rapeseed literature, we speculated that the yellow-seededness genes could elevate the activity of BnLEC1, BnABI3, BnFUS3, and BnbZIP67, etc., by reducing the expression levels of several transparent testa homologs, resulting in BnFAD3 and BnFAD7 upregulation and the acceleration of ALA synthesis. Yellow-seededness is a favorable factor to promote ALA synthesis in the two high-ALA accessions with the yellow-seeded trait. These findings provide initial insights into the transcriptomic differences between high-/low-ALA germplasms and a theoretic basis for seed quality breeding.

19.
Exp Neurol ; 376: 114775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604438

ABSTRACT

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Subject(s)
Cerebral Cortex , Epilepsy , Receptors, GABA-A , Thalamus , Animals , Female , Male , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Electroencephalography , Epilepsy/genetics , Epilepsy/physiopathology , Gene Knock-In Techniques , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Sleep/physiology , Sleep/genetics , Thalamus/metabolism , Thalamus/pathology
20.
J Pharm Anal ; 14(3): 295-307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618252

ABSTRACT

Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...