Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.484
Filter
1.
Nat Commun ; 15(1): 5128, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879628

ABSTRACT

Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.

2.
J Phys Chem Lett ; 15(16): 4384-4390, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659407

ABSTRACT

Rational design of catalysts relies on a deep understanding of the active centers. The structure and activity distribution of active centers on a surface are two of the central issues in catalysis and important targets of theoretical and experimental investigations. Herein, we report a machine learning-driven adequate sampling (MLAS) framework for obtaining a statistical understanding of the chemical environment near catalyst sites. Combined strategies were implemented to achieve highly efficient sampling, including the decomposition of degrees of freedom, stratified sampling, Gaussian process regression, and well-designed constraint optimization. The MLAS framework was applied to the rate-determining step in NH3 synthesis, namely the N2 activation process. We calculated the produced population function, PA, which provides a comprehensive and intuitive understanding of active centers. The MLAS framework can be broadly applied to other more complicated catalyst materials and reaction networks.

3.
Opt Lett ; 49(6): 1437-1440, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489419

ABSTRACT

A high-performance 5-junction cascade quantum dot (QD) vertical cavity surface-emitting laser (VCSEL) with 1.3 µm wavelength was designed. The characteristics of the QD as active regions and tunnel junctions are combined to effectively increase output power. The photoelectric characteristics of single-junction, 3-junction cascade, and 5-junction cascade QD VCSELs are compared at continuous-wave conditions. Results indicate that the threshold current gradually decreases, and the output power and slope efficiency exponential increase with the increase of the number of active regions. The peak power conversion efficiency of 58.4% is achieved for the 5-junction cascade individual QD VCSEL emitter with 10 µm oxide aperture. The maximum slope efficiency of the device is 6.27 W/A, which is approximately six times than that of the single-junction QD VCSEL. The output power of the 5-junction cascade QD VCSEL reaches 188.13 mW at injection current 30 mA. High-performance multi-junction cascade 1.3-µm QD VCSEL provides data and theoretical support for the preparation of epitaxial materials.

4.
Org Biomol Chem ; 22(13): 2630-2642, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38456330

ABSTRACT

Non-noble metal-based catalyst systems consisting of inexpensive manganese salts, picolinic acid and various heterocycles enable epoxidation of the challenging (terminal) unactivated olefins, selective C-H oxidation of unactivated alkanes, and O-H oxidation of secondary alcohols with aqueous hydrogen peroxide. In the presence of the in situ generated optimal manganese catalyst, epoxides are generated with up to 81% yield from alkenes and ketone products with up to 51% yield from unactivated alkanes. This convenient protocol allows the formation of the desired products under ambient conditions (room temperature, 1 bar) by employing only a slight excess of hydrogen peroxide with 2,3-butadione as a sub-stoichiometric additive.

5.
J Asian Nat Prod Res ; 26(3): 342-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37933140

ABSTRACT

Bicyclol, an innovative hepatoprotective drug, was approved by the Chinese National Medical Products Administration (NMPA) in 2001 to treat Hepatitis B and drug-induced liver injury. Two active metabolites of bicyclol have been identified as M2 and M3. To evaluate the impact on drug safety and efficacy of possible drug-drug interactions (DDIs) associated with these metabolites, a sufficient quantity of these metabolites is required. Herein, we report a concise novel route for the synthesis of M2 and M3 using the Suzuki-Miyaura coupling as the key step. Furthermore, we complete the gram-scale syntheses of M2 and M3.


Subject(s)
Biphenyl Compounds , Chemical and Drug Induced Liver Injury , Biphenyl Compounds/pharmacology , Protective Agents , Chemical and Drug Induced Liver Injury/drug therapy
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016401

ABSTRACT

Objective To analyze the research status and trend of scarlet fever literature in China, and to provide reference for subsequent research. Methods Three major Chinese databases, CNKI, Wanfang, and VIP, as well as Web of Science English database, were used to search for literature related to scarlet fever from 2000 to 2023. Citespace6.2.R2 software was used to statistically analyze the number of publications, authors, institutions and journals, co-cited literature, keyword clustering, and other literature characteristics of the literature. Results From 2000 to 2023, a total of 1 011 Chinese literature were included in the three major Chinese databases. Since 2011, the number of publications had gradually increased, but in recent years, the number of publications had decreased. The organization with the most publications was the Shenyang Center for Disease Control and Prevention. The cluster analysis of key words mainly formed 9 cluster tags, and the high-frequency keywords mainly included epidemic characteristics, epidemiology, incidence rate, etc. A total of 84 English literature were included in the WOS database, with an overall upward trend in publication volume. The institution with the most publications was the China Center for Disease Control and Prevention, and the most frequently cited journal was “LANCET INFECT DIS”.《Resurgence of scarlet fever in China: a 13-year population-based surveillance study》 was the most cited journal. After keyword cluster analysis, 9 cluster labels were mainly formed, and the keywords were mainly outbreak,Hong Kong, and Group A streptococcus. Conclusion Compared with the English literature, which mainly focuses on spatiotemporal aggregation, etiology and strain resistance, Chinese literature focuses more on epidemic surveillance, clinical features and quality nursing.

7.
Acta Anatomica Sinica ; (6): 105-112, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015145

ABSTRACT

Objective To study the microscopic structure and morphological characteristics of Zebrafish eyeball and retina at different developmental stages, and to lay a foundation for visual research model. Methods Select eight groups of zebrafish at different ages, with six fish in each group, 48 fish in total. Optical microscopy and transmission electron microscopy were used to observe the eyeball structure of Zebrafish at different developmental stages, and the thickness of retinal each layer was measured to analyze the temporal and spatial development pattern. The morphological characteristics of various cells in the retina and the way of nerve connection were observed from the microscopic and ultrastructural aspects, especially the structural differences between rod cells and cone cells. Results The retina of Zebrafish can be divided into ten layers including retinal pigment epithelial layer, rod cells and cone cells layer, outer limiting membrane, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, ganglion cell layer, nerve fiber layer, inner limiting membrane. Rod cells had a smaller nucleus and a higher electron density than cone cells. Photoreceptor terminals were neatly arranged in the outer plexiform layer, forming neural connections with horizontal cells and bipolar cells, and several synaptic ribbons are clearly visible within them. In Zebrafish retina, ganglion cell layer and inner plexiform layer are the earliest developed. With the growth and development of Zebrafish, the thickness of rod cells and cone cells layer and retinal pigment epithelial layer gradually increases, and the retinal structure was basically developed in about 10 weeks. Conclusion The retinal structure of Zebrafish is typical, with obvious stratification and highly differentiated nerve cells. There are abundant neural connections in the outer plexiform layer. The ocular development characteristics of Zebrafish are similar to those of most mammals.

8.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011012

ABSTRACT

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Subject(s)
Mice , Rats , Animals , Myeloid Differentiation Factor 88/metabolism , Vascular Remodeling , Cell Proliferation , Vascular System Injuries/pathology , Carotid Artery Injuries/pathology , Molecular Docking Simulation , Muscle, Smooth, Vascular , Cell Movement , Mice, Inbred C57BL , Signal Transduction , Succinates/pharmacology , Potassium/pharmacology , Cells, Cultured , Diterpenes , Cadherins
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005897

ABSTRACT

Objective To explore the research progress, research hotspot and development trend of tigecycline resistance based on the quantitative analysis and visualization function of CiteSpace. Methods The data were collected from 4,263 Chinese and English articles on tigecycline resistance in CNKI, Wanfang, VIP and Web of Science (WOS) databases from 2012 to 2022. CiteSpace 5.8.R3 software was used to analyze the cooperative network of authors, the cooperative network of countries and institutions, the total citation times of journals, and keywords included in the literature, to reveal the hotspots and trends of tigecycline resistance research. Results The number of articles published in English literature was higher than that in Chinese literature. China had the largest number of published documents, showing a significant international academic influence in this research field. Countries all over the world were concerned about the resistance of tigecycline, but Chinese literatures focused more on the clinical infection and prevention of tigecycline resistance, while English literatures placed special emphasis on the research about the drug resistance mechanism of tigecycline. Conclusion The research direction at home and abroad is basically the same, but the research focus has gradually shifted from the clinical treatment and monitoring of tigecycline to the molecular level of drug resistance mechanism.

10.
Article in English | MEDLINE | ID: mdl-38134384

ABSTRACT

Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles, mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

11.
PLoS One ; 18(11): e0289184, 2023.
Article in English | MEDLINE | ID: mdl-38032972

ABSTRACT

Transient electromagnetic Method (TEM) is an efficient geophysical detection technology suitable for detection of urban near-surface space. However, its detection results are well affected by the low resistance anomaly, which interferes with the interpretation of the inversion results. This article used finite element method to simulate the entire process of urban underground pipeline under TEM detection. The causes of interference and the degree of interference under different working conditions were analyzed. The results demonstrate that low resistance anomaly in magnetic field will caused electromagnetic energy absorption and resulting eddy current losses, which lead to a distortion of the primary magnetic field in the vicinity of the pipeline, and formation of a weak field zone beneath the pipeline. The size and shape of the shielding zone are affected by burial depth, transmitter coil diameter, and anomaly size. When the burial depth exceeds 10 times the diameter of the coil or pipeline, the shielding range stabilizes at 1.5-2 times the pipeline's transverse diameter. Moreover, when the pipeline's transverse diameter exceeds twice the transmitter coil diameter, the weak field zone beneath the pipeline will transform into a strong field zone, this is due to the refractive and reflective effects of the electromagnetic field. Finally, experiments were conducted and the inverted results was found to be larger than the actual pipeline diameter, with an error margin similar to that explained by the simulation. These results have implications for high accuracy detecting underground pipelines in urban areas.


Subject(s)
Electromagnetic Fields , Magnetic Fields , Computer Simulation
12.
Med Sci Monit ; 29: e941937, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864329

ABSTRACT

BACKGROUND Lumbar disc herniation (LDH) at L4-L5 impacts paravertebral muscle morphology. Intervertebral disc degeneration is linked to paravertebral muscle changes, affecting LDH treatment outcomes. This study explored L4-L5 LDH paravertebral muscle alterations, specifically in the erector spinae, multifidus, and psoas major, using Michigan State University's classification to guide LDH treatment. MATERIAL AND METHODS The study enrolled 160 patients, including 39 normal patients and 121 L4-L5 LDH patients. Patients with LDH were grouped according to MSU classification and compared to the normal group according to demographics and imaging changes. RESULTS In patients with L4-L5 herniation in Zone B, the FI of the ES muscle at L3-L4 level, L4-L5 level, and L5-S1 level was higher than that of normal people (P=0.018, P=0.043, P=0.010, respectively), and there was no difference between FI of MF and normal people. The Zone B patients also had a smaller CSA of the ES muscle at L4-L5 level than that in the normal group (P=0.049). Patients in the Zone C group were older than those in the normal group (P=0.014). The CSA of the PM of patients with Grade 3 herniation differed from that of the normal group at the L4-L5 and L5-S1 level. They were higher than in normal people at L4-L5 level (P=0.011) and lower at L5-S1 level (P=0.028). CONCLUSIONS In patients with L4-L5 herniation in Zone B, the FI of ES at L3-S1 level was higher than in normal people, and the CSA at L4-L5 level was smaller than in normal people. In patients with Grade3 herniation, PM CSA was larger at L4-L5 level and smaller at L5-S1 level than in normal people.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Humans , Michigan , Universities , Lumbar Vertebrae , Magnetic Resonance Imaging/methods , Psoas Muscles
13.
Opt Express ; 31(16): 26777-26790, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710529

ABSTRACT

In this work, we obtained a new, to the best of our knowledge, structure of anti-resonant fiber (ARF) by an adaptive particle swarm optimization (PSO) algorithm. Different from the prior method of stacking elemental parts and optimizing parameters through experience or algorithm, we decompose some classic structures into points and optimize the positions of these points through swarm intelligence. The fiber structure is reconstructed by interpolation, and some new structures with low confinement loss (CL) and high higher order mode extinction ratio (HOMER) are obtained. These novel ARFs exhibit similar structural characteristics, and are named as "the bulb-shaped ARFs". Among these structures, the minimum achieved CL is 2.21 × 10-5dB/m at 1300 nm and the maximum achieved HOMER exceeds 14,000. This work provides a method with high degree of freedom in the design of non-uniform cross-section waveguides and helps to discover new fiber structures.

14.
Plant Dis ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700477

ABSTRACT

Pear (Pyrus communis) is an important deciduous fruit cultivated on a worldwide scale including Pakistan. During August 2021, a postharvest fruit rot disease was observed on several pears at various farmers market in Okara- a district of Punjab Province, Pakistan. The incidence of the disease varied from 7 to 20% with 35% disease severity. Necrotic spots (10 to 20 mm diameter) were first observed on the infected pear fruit. The spots enlarged gradually and developed into a brown, water-soaked and rotted lesion. Eventually, the whole fruit became soft, rotted and covered with a gray-brown mycelium. The isolates were obtained from the symptomatic tissues (n = 18) incubated on carrot discs that had been surface sterilized in 100-ppm streptomycin solution. After consistent sporulation of a fungus on the carrot discs, the ascospore masses formed at the tip of perithecia were transferred to malt extract agar (MEA). Primary conidia were cylindrical and hyaline (7 to 11 × 4 to 7 µm) and secondary conidia were hyaline and barrel-shaped (7 to 12 × 5 to 8 µm). Endoconidiophores with primary conidia were (12 to 27 × 2.6 to 5.5 µm). Perithecia produced on carrot discs were dark brown to black, and the base was 157 to 278 µm in diameter. Ascomatal necks were 512 to 656 µm long, dark brown to black, lighter in color at apices, tapering from base (23 to 45 µm diameter) to apex (13 to 24 µm diameter). Ostiolar hyphae were 41 to 79 µm long. Ascospores were hyaline, hat shaped, 3 to 4 µm long, and accumulated in a sticky matrix at the tips of perithecial necks. Mycelium was initially hyaline but became dark greenish brown after 7 days. Dark brown, thick-walled aleuroconidia (13 to 19.5 × 9 to 14 µm) appeared on culture plates after 2 months. Based on morphological characteristics, the fungus was identified as Ceratocystis fimbriata (Engelbrecht, 2005; Suwandi et al. 2021). To further confirm species identification, genomic DNA of two representative isolates (UO-05 and UO-06) was obtained using an extraction kit. The internal transcribed spacer (ITS) region was amplified using ITS1/4 (White et al. 1990). A BLAST search with GenBank accession nos. OR185451 and OR185456 indicated 99 to 100% identity with several C. fimbriata including type species (MH856050.1; KC493160.1; MT560374.1). Pathogenicity tests were conducted by inoculating nine disease-free pear (cv. Concord) fruit after disinfesting in 75% ethanol. A prepared spore suspension (1.0 × 106 spores/ml) was dropped on the wounds (a depth of 1 mm diameter) on the pear surface, which were made by a sterilized needle. 10 µl of a prepared spore suspension was dropped onto nine pears. Sterile water (10 µl) was dropped on the wounded sites of nine pear fruits as negative controls and all fruits were incubated in a growth chamber at 30/26°C (day/night, 90% relative humidity). Symptoms similar to those on the naturally infected fruits began after 4 to 5 days of inoculation, while controls remained healthy. The fungal isolates recovered from inoculated pears were morphologically identical to the C. fimbriata isolates originally recovered from symptomatic fruits fulfilling Koch's postulates. The pathogen has been reported to cause postharvest fruit rot of passion fruit and cucumber (Firmino et al. 2016; Li et al. 2019). To our knowledge, this is the first report of C. fimbriata causing fruit rot of pear in Punjab Province. The detection of this disease will help pear growers to take actions to monitor and prevent disease outbreak as well as develop an effective management practice when it occurs.

15.
Sci Total Environ ; 903: 166249, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574076

ABSTRACT

Rural sewage treatment was traditionally faced contradiction between low-treatment rates and the need for low-cost development. To address this challenge, we explored the coupling of effluent circulation and step-feeding strategies in a multi-stage tidal flow constructed wetland (TFCW) to achieve stable nitrogen (N) removal performance under conditions of low carbon-to-nitrogen (C/N) ratios and low temperatures. The modified multi-stage TFCW demonstrated the ability to significantly reduce the concentrations of effluent NH4+-N and NO3--N by 33.9 % and 54.8 % respectively, resulting in values of 7.47 mg/L and 3.93 mg/L. Additionally, it achieved an average TN removal efficiency of 69.2 %. The improved N removal performance of rural sewage by the modified multi-stage TFCW at low temperatures was primarily attributed to autotrophic nitrification, heterotrophic nitrification, and autotrophic denitrification. Among the identified functional genera, Nitrosomonas and Nitrosospira played key roles as autotrophic nitrification bacteria (ANB), contributing to 28.2 % of NH4+-N removal. The key heterotrophic nitrification bacteria (HNB) Acidovorax and Rudaea were mainly responsible for 71.3 % of NH4+-N removal via the two-step ammonia assimilation through the organic nitrogen pathway. Furthermore, Rhodanobacter and Acinetobacter emerged as key autotrophic denitrification bacteria (ADNB), accounting for 79.9 % of NO3--N conversion and removal. In summary, this study provides valuable theoretical insights and supports ongoing efforts in biological regulation to address the challenges associated with rural sewage treatment.

16.
Front Physiol ; 14: 1036925, 2023.
Article in English | MEDLINE | ID: mdl-37275224

ABSTRACT

Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions.

17.
Plant Cell Environ ; 46(8): 2575-2589, 2023 08.
Article in English | MEDLINE | ID: mdl-37264560

ABSTRACT

The novel protein elicitor GP1pro is the protein component of glycoprotein GP-1 isolated and identified from Streptomyces kanasensis ZX01. GP1pro induces the production of reactive oxygen species (ROS) and a hypersensitive response (HR), along with the accumulation of resistance-related genes and secondary metabolites. It ultimately regulates plant defence responses. Further analysis revealed that GP1pro interacts with the PIP2-family aquaporin protein NbPIP2;4 on the plant plasma membrane (PM) in Nicotiana benthamiana. PM localization is necessary for inducing GP1pro resistance. These results demonstrate that NbPIP2;4 acts as a H2 O2 transporter to positively regulate plant immunity and ROS accumulation. In summary, this study elucidates a conserved and novel pathway caused by GP1pro to initiate host cellular defences by targeting the plant aquaporin protein NbPIP2;4 and transporting apoplast-to-cytoplast H2 O2 to regulate plant immunity.


Subject(s)
Aquaporins , Plant Immunity , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Nicotiana/metabolism , Aquaporins/metabolism , Plant Diseases
18.
ACS Omega ; 8(18): 16428-16438, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179604

ABSTRACT

Experimental studies of laminar burning velocity and flame instabilities of 2,5-dimethylfuran (DMF) were conducted at different equivalence ratios (from 0.9 to 1.3), initial pressures (from 0.1 to 0.8 MPa), and initial temperatures (from 393 to 493 K) by the method of the schlieren and high-speed photography system in the constant-volume combustion bomb. The results showed that the laminar burning velocity of the DMF/air flame decreased with increasing initial pressure and increased with increasing initial temperature. The maximum laminar burning velocity occurred at φ = 1.1, regardless of the initial pressure and temperature conditions. The power law fitting of baric coefficients, thermal coefficients, and laminar burning velocity was obtained, and the laminar burning velocity of DMF/air flame can be predicted well in the study range. The diffusive-thermal instability of the DMF/air flame was more pronounced during rich combustion. Increasing the initial pressure increased both the diffusive-thermal instability and the hydrodynamic instability of the flame, while increasing the initial temperature increased the diffusive-thermal instability of the flame, which was mainly responsible for flame propagation. In addition, the Markstein length, density ratio, flame thickness, critical radius, acceleration index, and classification excess of the DMF/air flame were investigated. The results of this paper provide a theoretical support for the application of DMF in engineering.

19.
Org Lett ; 25(22): 4140-4144, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37227073

ABSTRACT

A palladium-catalyzed thiocarbonylation reaction for the synthesis of α,ß-unsaturated thioesters from vinyl triflates with S-aryl thioformates as the thioester sources has been developed. The reaction proceeded smoothly at low temperature, and a variety of α,ß-unsaturated thioesters were produced in moderate to high yields with very good functional group tolerance. This protocol features mild reaction conditions, good substrate scope, and avoids the use of toxic CO gas or odorous thiols, which made it a worthy addition to α,ß-unsaturated thioester synthesis via a thioester transfer process.


Subject(s)
Palladium , Sulfhydryl Compounds , Catalysis
20.
Anim Biotechnol ; 34(9): 4783-4792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37022008

ABSTRACT

The proliferation and myogenic differentiation of muscle stem cells (MuSCs) are important factors affecting muscle development and beef quality. There is increasing evidence that circRNAs can regulate myogenesis. We found a novel circRNA, named circRRAS2 that is significantly upregulated in the differentiation phase of bovine MuSCs. Here, we aimed to determine its roles in the proliferation and myogenic differentiation of these cells. The results showed that circRRAS2 was expressed in several bovine tissues. CircRRAS2 inhibited MuSCs proliferation and promoted myoblast differentiation. In addition, chromatin isolation by using RNA purification and mass spectrometry in differentiated muscle cells identified 52 RNA-binding proteins that could potentially bind to circRRAS2, in order to regulate their differentiation. The results suggest that circRRAS2 could be a specific regulator of myogenesis in bovine muscle.HighlightsCircRRAS2 expression is higher in DM cells than in GM cells.CircRRAS2 could significantly inhibit the proliferation and apoptosis of bovine MuSCs.CircRRAS2 promotes the differentiation of bovine MuSCs into myotubes.CircRRAS2 may exert regulatory effects through multiple RNA binding proteins.


Subject(s)
Satellite Cells, Skeletal Muscle , Cattle , Animals , Cell Differentiation/genetics , Cells, Cultured , Cell Line , Muscle Development/genetics , Muscle, Skeletal/metabolism , Cell Proliferation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...