Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Blood Press Res ; 49(1): 81-90, 2024.
Article in English | MEDLINE | ID: mdl-38185119

ABSTRACT

INTRODUCTION: Sodium-glucose cotransporter 2 (SGLT2) inhibitors target SGLT2 in renal proximal tubules and promote glycosuria in type 2 diabetes mellitus in humans and animal models, resulting in reduced blood glucose levels. Although clinical trials have shown that SGLT2 inhibitors attenuate the progression of chronic kidney disease, there have been concerns regarding SGLT2-induced acute kidney injury. In this study, we investigated the effect of SGLT2 inhibitors on adriamycin-induced kidney injury in mice. METHODS: Seven-week-old balb/c mice were injected with adriamycin 11.5 mg/kg via the tail vein. Additionally, dapagliflozin was administered via gavage for 2 weeks. The mice were divided into five groups: vehicle, dapagliflozin 3 mg/kg, adriamycin, adriamycin plus dapagliflozin 1 mg/kg, and adriamycin plus dapagliflozin 3 mg/kg. RESULTS: Adriamycin injection reduced the body weight and food and water intakes. Dapagliflozin also decreased the body weight and food and water intakes. Fasting blood glucose and urine volume were not altered by either adriamycin or dapagliflozin. Once adriamycin-induced kidney injury had developed, there were no differences in systolic blood pressure among the groups. Dapagliflozin did not alleviate proteinuria in adriamycin-induced kidney injury. Adriamycin induced significant glomerular and interstitial injury, but dapagliflozin did not attenuate these changes in renal injury. Interestingly, SGLT2 expressions were different between the cortex and medulla of kidneys by dapagliflozin treatment. Dapagliflozin increased SGLT2 expression in medulla, not in cortex. CONCLUSION: Dapagliflozin had no effect on proteinuria or inflammatory changes such as glomerular and tubular damages in adriamycin-induced kidney injury. Our study suggests that dapagliflozin does not protect against adriamycin-induced kidney injury. More experimental studies regarding the effects of SGLT2 inhibitors on various kidney diseases are needed to clarify the underlying mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Glucosides , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Doxorubicin , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Kidney/metabolism , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Renal Insufficiency, Chronic/metabolism , Proteinuria/drug therapy , Body Weight , Water/metabolism
2.
Anim Cells Syst (Seoul) ; 27(1): 187-196, 2023.
Article in English | MEDLINE | ID: mdl-37789932

ABSTRACT

The spexin-based GALR2 agonist (NS200) is a novel drug, which has shown antidepressant and anxiolytic action in a recent experimental study. In this study, we investigated the effects of NS200 on renal injury in an animal model of type 2 diabetes. Eight-week-old diabetic db/db mice were administered NS200 for 12 weeks. NS200 was intraperitoneally administered at a dose of 1.0 mg/kg/day. Metabolic parameters and structural and molecular changes in the kidneys were compared among the three groups: non-diabetic db/m control, db/db mice, and NS200-treated db/db mice. In db/db mice, NS200 administration did not impact the body weight, food and water intake, urinary volume, fasting blood glucose level, or HbA1c levels. Insulin and glucose tolerance were also unaffected by NS200 treatment. However, NS200 improved urinary albumin excretion and glomerulosclerosis in diabetic kidneys. Activation of TGFß1 and insulin signaling pathways, such as PI3 K /AKT/ERK, were inhibited by NS200. In conclusion, a spexin-based GALR2 agonist attenuated diabetic nephropathy by alleviating renal fibrosis in mice with type 2 diabetes. Spexin-based GALR2 agonists have considerable potential as novel treatment agents in diabetic nephropathy.

3.
Article in English | MEDLINE | ID: mdl-37559225

ABSTRACT

Background: Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.

4.
Gerontology ; 69(7): 852-865, 2023.
Article in English | MEDLINE | ID: mdl-36709751

ABSTRACT

INTRODUCTION: Aging of the kidney is associated with complex molecular, histological, and functional changes. Although the aging process itself does not induce renal damage, underlying disease such as diabetes mellitus can aggravate kidney injury during aging. Although oxidative stress is considered an important mediator in age-related renal fibrosis, it is unclear how oxidative stress increases during normal and diabetic aging. METHODS: In this study, we investigated molecular changes in the kidney in normal and diabetic aging mice. C57BL/6 mice were studied at 2, 12, and 24 months of age, and leptin receptor-deficient db/db mice were studied at 8, 12, 16, 20, 24, and 38 weeks of age. We measured renal functional parameters, fibrotic and inflammatory markers, and oxidative stress markers at all the above time points. RESULTS: Both nondiabetic and diabetic mice exhibited progressive microalbuminuria during their lifespan. Interestingly, both diabetic aging and normal aging mice showed progressive increases in oxidative stress markers such as plasma and urinary 8-isoprostane, as well as renal lipid hydroperoxide content. In renal tissues, proinflammatory and profibrotic molecules were significantly upregulated in an age-dependent manner. Expression of three NADPH oxidase (Nox) isoforms, namely, Nox1, Nox2, and Nox4, was significantly increased during aging. Compared with normal aging mice, diabetic db/db mice demonstrated more dramatic changes during aging process. CONCLUSIONS: Our findings suggest that NADPH oxidases play an important role in the aging kidney under both normal and diabetic conditions. Targeting of these oxidases might be a new promising therapy to treat issues associated with aging kidneys.


Subject(s)
Diabetes Mellitus, Experimental , NADPH Oxidases , Mice , Animals , NADPH Oxidases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Mice, Inbred C57BL , Kidney/pathology , Oxidative Stress , Aging , Reactive Oxygen Species/metabolism
5.
Biomedicines ; 8(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086608

ABSTRACT

Interstitial fibrosis is a common feature of chronic kidney disease, and platelet-derived growth factor receptor-ß (PDGFR-ß)-positive mesenchymal cells are reportedly the major source of scar-producing myofibroblasts. We had previously demonstrated that albumin and its derivative R-III (a retinol-binding protein-albumin domain III fusion protein) inhibited the transdifferentiation/activation of hepatic stellate cells (HSCs) to myofibroblasts and that R-III administration reduced liver fibrosis. In this study, we isolated cells (referred to as renal stellate cells, RSCs) from rat kidney tissues using the HSC isolation protocol and compared their morphological and biochemical characteristics with those of HSCs. RSCs shared many characteristics with HSCs, such as storage of vitamin A-containing lipid droplets and expression of HSC markers as well as pericyte markers. RSCs underwent spontaneous transdifferentiation into myofibroblasts in in vitro culture, which was inhibited by albumin expression or R-III treatment. We also evaluated the therapeutic effects of R-III in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Injected R-III localized predominantly in cytoglobin/stellate cell activation-associated protein (Cygb/STAP)-positive cells in the kidney and reduced renal fibrosis. These findings suggest that RSCs can be recognized as the renal counterparts of HSCs and that RSCs represent an attractive therapeutic target for anti-fibrotic therapy.

6.
Parasitol Res ; 102(6): 1195-200, 2008 May.
Article in English | MEDLINE | ID: mdl-18320226

ABSTRACT

The magnetic method has been previously utilized to concentrate Plasmodium-infected erythrocytes without any significant influence on the viability of the parasite. We attempted, in this study, to concentrate and synchronize cultivated P. falciparum via the magnetic method. The results of this study showed that the magnetic method effectively synchronized and concentrated P. falciparum with finer demarcation capacity in the erythrocytic asexual cycle of the parasite than currently available synchronization methods. Concentration and synchronization by the magnetic method proved most effective when schizonts were dominant. Therefore, it proved necessary to enhance the synchronization efficiency of the magnetic method by first applying the method currently in use, which renders schizonts dominant. Our study also showed that the intrinsic life cycle of erythrocytic P. falciparum was slightly longer than 48 h observed in natural infection cases, and that the length of the intrinsic life cycles between various P. falciparum strains differed slightly.


Subject(s)
Cell Separation/methods , Erythrocytes/parasitology , Magnetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Animals , Schizonts/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...