Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37998816

ABSTRACT

ESBL-producing E. coli is a public health concern in healthcare settings and the community. Between 2009 and 2018, a total of 187 ESBL-producing pathogenic E. coli isolates were identified, and clonal complex (CC) 10 was the predominant clone (n = 57). This study aimed to characterize the ESBL-producing pathogenic E. coli CC10 strains obtained from patients with diarrhea to improve our understanding of CC10 distribution in the Republic of Korea. A total of 57 CC10 strains were selected for comprehensive molecular characterization, including serotype identification, the analysis of antibiotic resistance genes, the investigation of genetic environments, the determination of plasmid profiles, and the assessment of genetic correlations among CC10 strains. Among the CC10 isolates, the most prevalent serotype was O25:H16 (n = 21, 38.9%), followed by O6:H16 (10, 19.6%). The most dominant ESBL genes were blaCTX-M-15 (n = 31, 55%) and blaCTX-M-14 (n = 15, 27%). Most blaCTXM genes (n = 45, 82.5%) were located on plasmids, and these incompatibility groups were confirmed as IncB/O/K/Z, IncF, IncI1, and IncX1. The mobile elements located upstream and downstream mainly included ISEcp1 (complete or incomplete) and IS903 or orf477. Phylogenetic analysis showed that the CC10 strains were genetically diverse and spread among several distinct lineages. The results of this study show that ESBL-producing pathogenic E. coli CC10 has been consistently isolated, with CTX-M-15-producing E. coli O25:H16 isolates being the major type associated with the distribution of CC10 clones over the past decade. The identification of ESBL-producing pathogenic E. coli CC10 isolates underscores the possible emergence of resistant isolates with epidemic potential within this CC. As a result, continuous monitoring is essential to prevent the further dissemination of resistant ESBL-producing E. coli CC10 strains.

2.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36679951

ABSTRACT

Mumps is an acute infectious disease caused by the mumps virus (MuV). Despite high global vaccination coverage, mumps outbreaks continue to occur, even in vaccinated populations. Therefore, we aimed to identify candidate vaccines that can induce an immunogenic response against diverse MuV genotypes with greater efficacy than the currently available options. Vaccine candidates were sourced using formalin-inactivated viral strains. The inactivated vaccines were administered to BALB/c mice (through a primer and booster dose administered after a three-week interval). We tested the neutralizing antibodies of the candidate vaccines against various MuV genotypes to determine their overall efficacy. The formalin-inactivated F genotype vaccine was found to have higher cross-neutralizing titers against genotypes F, H, and G as well as significant Th1 cytokines responses, IFN-γ, TNF-α, and IL-2 than the Jeryl Lynn (JL) vaccine. Our findings suggest that the inactivated F genotype mumps vaccine has higher immunogenicity than the JL vaccine against diverse circulating MuVs.

3.
Vaccine ; 39(36): 5214-5223, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34334254

ABSTRACT

Smallpox, a disease caused by the variola virus, is one of the most dangerous diseases and had killed numerous people before it was eradicated in 1980. However, smallpox has emerged as the most threatening bio-terrorism agent; as the first- and second-generation smallpox vaccines have been controversial and have caused severe adverse reactions, new demands for safe smallpox vaccines have been raised and some attenuated smallpox vaccines have been developed. We have developed a cell culture-based highly attenuated third-generation smallpox vaccine candidate KVAC103 strain by 103 serial passages of the Lancy-Vaxina strain derived from the Lister in Vero cells. Several clones were selected, taking into consideration their shape, size, and growth rate in mammalian cells. The clones were then inoculated intracerebrally in suckling mice to test for neurovirulence by observing survival. Protective immune responses in adult mice were examined by measuring the levels of neutralization antibodies and IFN-γ expression. Among several clones, clone 7 was considered the best alternative candidate because there was no mortality in suckling mice against a lethal challenge. In addition, enhanced neutralizing antibodies and T-cell mediated IFN-γ production were observed in clone 7-immunized mice. Clone 7 was named "KVAC103" and was used for the skin toxicity test and full-genome analysis. KVAC103-inoculated rabbits showed reduced skin lesions compared to those inoculated with the Lister strain, Lancy-Vaxina. A whole genome analysis of KVAC103 revealed two major deleted regions that might contribute to the reduced virulence of KVAC103 compared to the Lister strain. Phylogenetic inference supported the close relationship with the Lister strain. Collectively, our data demonstrate that KVAC103 holds promise for use as a third-generation smallpox vaccine strain due to its enhanced safety and efficacy.


Subject(s)
Smallpox Vaccine , Smallpox , Variola virus , Animals , Antibodies, Viral , Chlorocebus aethiops , Mice , Mice, Inbred BALB C , Phylogeny , Rabbits , Smallpox/prevention & control , Vaccines, Attenuated , Vaccinia virus/genetics , Vero Cells
4.
Vaccine ; 39(13): 1870-1876, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33642163

ABSTRACT

Mumps is a contagious disease caused by the mumps virus. It can be prevented using mumps vaccines, administered as a measles-mumps-rubella (MMR) vaccine. For first and second dose immunization, children aged 12-15 months and 4-6 years have been administered this vaccine since 1997 in Korea. Nevertheless, mumps outbreaks still occur in vaccinated populations worldwide. Hence, immunity against these diseases may be attenuated, or there are antigenic differences between currently available vaccine strains and circulating wild-type viruses. After the introduction of national immunization programs in Korea, mumps cases became sporadic. Viral genotypes F, H, and I have emerged since 1998 whereas the vaccine strains belong to genotype A. Here, we compared the amino acid sequences of the haemagglutinin-neuraminidase (HN) gene from wild-type viruses and the mumps vaccine and measured the cross-neutralization titers between them. We selected the F, H, and I wild-type mumps strains circulating in Korea from 1998 to 2016 and analyzed changes in the amino acid sequence of the protein encoded by the HN gene. We measured mumps virus-specific IgG and rapid focus reduction neutralization test (FRNT) titers in Korean isolates and sera obtained from 50 children aged 1-2 years who had been administered a single dose of MMR vaccine. Analysis of the HN protein sequences disclosed no changes in the glycosylation sites but did reveal 4-5 differences between the Korean isolates and the genotype A vaccine strain in terms of the neutralizing epitope sites on their HN proteins. Post-vaccination FRNT titers were significantly lower against genotypes F, H, and I than they were against genotype A. This finding highlights the possibility of a recurrence of mumps outbreaks in vaccinated populations depending on the degree of genetic conservation of the HN gene. Further research into this issue is needed to prevent the resurgence of mumps.


Subject(s)
Mumps virus , Mumps , Antibodies, Viral , Child , Child, Preschool , Humans , Infant , Measles-Mumps-Rubella Vaccine , Mumps/epidemiology , Mumps/prevention & control , Mumps Vaccine , Mumps virus/genetics , Neutralization Tests , Republic of Korea
5.
Virology ; 549: 25-31, 2020 10.
Article in English | MEDLINE | ID: mdl-32818729

ABSTRACT

It has been reported worldwide that the Zika virus (ZIKV) could be transmitted through placentas and sexual contact. ZIKV can also cause Guillain-Barre syndrome, microcephaly and neurological abnormalities. However, there are no approved vaccines available. We constructed six DNA vaccine candidates and tested the immunogenicity. Tandem repeated envelope domain Ⅲ (ED Ⅲ × 3) induced highly total IgG and neutralization antibody, as well as CD8+ T cell responses. Also, stem region-removed envelope (E ΔSTEM) elicited a robust production of IFN-γ in mice. To examine in vivo protection, we used mice treated with an IFNAR1 blocking antibody before and after the challenge. Vaccination with the two candidates led to a decline in the level of viral RNAs in organs. Moreover, the sera from the vaccinated mice did not enhance the infection of Dengue virus in K562 cells. These findings suggest the potential for the development of a novel ZIKV DNA vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Vaccines, DNA/biosynthesis , Viral Envelope Proteins/immunology , Viral Vaccines/biosynthesis , Zika Virus Infection/prevention & control , Zika Virus/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Chlorocebus aethiops , Dengue Virus/drug effects , Dengue Virus/growth & development , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine , K562 Cells , Mice , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Vaccination/methods , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology
6.
Mar Pollut Bull ; 150: 110635, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31910514

ABSTRACT

We conducted experiments to investigate the effects of finfish aquaculture and to propose appropriate proxies for assessing their environmental impact. Due to enhanced fish feed input, sulfate reduction (SR) and the resulting metabolic products (H2S, NH4+, PO43-) were significantly greater at the farm than at the control site. Benthic release of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) from farm sediment accounted for 52-837% and 926-1048%, respectively, of the potential DIN and DIP demand for phytoplankton production. The results suggest that excess organic loading in fish farms induces deleterious eutrophication and algal blooms in coastal ecosystems via benthic-pelagic coupling. Direct SR measurement provided the most useful information of all the parameters on organic contamination in fish farms. However, given its abundance, relatively lower chemical reactivity and relative ease of analysis, elemental sulfur was regarded as the most appropriate proxy for assessing the environmental impacts of finfish aquaculture.


Subject(s)
Aquaculture , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical , Animals , Eutrophication , Geologic Sediments , Nitrogen , Phosphorus , Sulfur
7.
Mol Cell Biol ; 22(21): 7658-66, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12370312

ABSTRACT

PDZ-GEF is a novel guanine nucleotide exchange factor for Rap1 GTPase. Here we isolated Drosophila melanogaster PDZ-GEF (dPDZ-GEF), which contains the all-conserved domains of mammalian and nematode PDZ-GEF including cyclic nucleotide monophosphate-binding, Ras exchange motif, PDZ, RA, and GEF domains. dPDZ-GEF loss-of-function mutants were defective in the development of various organs including eye, wing, and ovary. Many of these phenotypes are strikingly similar to the phenotype of the rolled mutant, implying that dPDZ-GEF functions upstream of the mitogen-activated protein (MAP) kinase pathway. Indeed, we found that dPDZ-GEF is specifically involved in photoreceptor cell differentiation, facilitating its neuronal fate via activation of the MAP kinase pathway. Rap1 was found to link dPDZ-GEF to the MAP kinase pathway; however, Ras was not involved in the regulation of the MAP kinase pathway by dPDZ-GEF and actually had an inhibitory function. The analyses of ovary development in dPDZ-GEF-deficient mutants also demonstrated another role of dPDZ-GEF independent of the MAP kinase signaling pathway. Collectively, our findings identify dPDZ-GEF as a novel upstream regulator of various morphogenetic pathways and demonstrate the presence of a novel, Ras-independent mechanism for activating the MAP kinase signaling pathway.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/physiology , Nerve Tissue Proteins , rap1 GTP-Binding Proteins/metabolism , Animals , Apoptosis , Blotting, Northern , Cell Lineage , Cell Survival , Drosophila melanogaster , Female , Genes, Reporter , Homozygote , In Situ Nick-End Labeling , MAP Kinase Signaling System , Male , Microscopy, Electron, Scanning , Models, Genetic , Ovary/pathology , Phenotype , Photoreceptor Cells, Invertebrate/metabolism , Photoreceptor Cells, Invertebrate/ultrastructure , Protein Binding , Signal Transduction , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...