Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cancer Immunol Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959337

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTßR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTßR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.

2.
J Immunother Cancer ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38772686

ABSTRACT

BACKGROUND: CD33 is a tractable target in acute myeloid leukemia (AML) for chimeric antigen receptor (CAR) T cell therapy, but clinical success is lacking. METHODS: We developed 3P14HLh28Z, a novel CD33-directed CD28/CD3Z-based CAR T cell derived from a high-affinity binder obtained through membrane-proximal fragment immunization in humanized mice. RESULTS: We found that immunization exclusively with the membrane-proximal domain of CD33 is necessary for identification of membrane-proximal binders in humanized mice. Compared with clinically validated lintuzumab-based CAR T cells targeting distal CD33 epitopes, 3P14HLh28Z showed enhanced in vitro functionality as well as superior tumor control and increased overall survival in both low antigen density and clinically relevant patient-derived xenograft models. Increased activation and enhanced polyfunctionality led to enhanced efficacy. CONCLUSIONS: Showing for the first time that a membrane-proximal CAR is superior to a membrane-distal one in the setting of CD33 targeting, our results demonstrate the rationale for targeting membrane-proximal epitopes with high-affinity binders. We also demonstrate the importance of optimizing CAR T cells for functionality in settings of both low antigen density and clinically relevant patient-derived models.


Subject(s)
Immunotherapy, Adoptive , Sialic Acid Binding Ig-like Lectin 3 , Humans , Animals , Mice , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sialic Acid Binding Ig-like Lectin 3/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor
3.
Blood ; 143(6): 507-521, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38048594

ABSTRACT

ABSTRACT: Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.


Subject(s)
Leukemia, Myeloid, Acute , Single-Chain Antibodies , Humans , T-Lymphocytes , Receptors, Antigen, T-Cell , Leukemia, Myeloid, Acute/pathology , Immunotherapy, Adoptive
4.
Cancers (Basel) ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37345045

ABSTRACT

MDM2-SNP309 (rs2279744), a common genetic modifier of cancer incidence in Li-Fraumeni syndrome, modifies risk, age of onset, or prognosis in a variety of cancers. Melanoma incidence and outcomes vary by sex, and although SNP309 exerts an effect on the estrogen receptor, no consensus exists on its effect on melanoma. MDM2 and MDM4 restrain p53-mediated tumor suppression, independently or together. We investigated SNP309, an a priori MDM4-rs4245739, and two coinherited variants, in a population-based cohort of 3663 primary incident melanomas. Per-allele and per-haplotype (MDM2_SNP309-SNP285; MDM4_rs4245739-rs1563828) odds ratios (OR) for multiple-melanoma were estimated with logistic regression models. Hazard ratios (HR) for melanoma death were estimated with Cox proportional hazards models. In analyses adjusted for covariates, females carrying MDM4-rs4245739*C were more likely to develop multiple melanomas (ORper-allele = 1.25, 95% CI 1.03-1.51, and Ptrend = 0.03), while MDM2-rs2279744*G was inversely associated with melanoma-death (HRper-allele = 0.63, 95% CI 0.42-0.95, and Ptrend = 0.03). We identified 16 coinherited expression quantitative loci that control the expression of MDM2, MDM4, and other genes in the skin, brain, and lungs. Our results suggest that MDM4/MDM2 variants are associated with the development of subsequent primaries and with the death of melanoma in a sex-dependent manner. Further investigations of the complex MDM2/MDM4 motif, and its contribution to the tumor microenvironment and observed associations, are warranted.

5.
Blood ; 134(7): 626-635, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31262783

ABSTRACT

High-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) is the standard of care for relapsed or primary refractory (rel/ref) chemorefractory diffuse large B-cell lymphoma. Only 50% of patients are cured with this approach. We investigated safety and efficacy of CD19-specific chimeric antigen receptor (CAR) T cells administered following HDT-ASCT. Eligibility for this study includes poor-risk rel/ref aggressive B-cell non-Hodgkin lymphoma chemosensitive to salvage therapy with: (1) positron emission tomography-positive disease or (2) bone marrow involvement. Patients underwent standard HDT-ASCT followed by 19-28z CAR T cells on days +2 and +3. Of 15 subjects treated on study, dose-limiting toxicity was observed at both dose levels (5 × 106 and 1 × 107 19-28z CAR T per kilogram). Ten of 15 subjects experienced CAR T-cell-induced neurotoxicity and/or cytokine release syndrome (CRS), which were associated with greater CAR T-cell persistence (P = .05) but not peak CAR T-cell expansion. Serum interferon-γ elevation (P < .001) and possibly interleukin-10 (P = .07) were associated with toxicity. The 2-year progression-free survival (PFS) is 30% (95% confidence interval, 20% to 70%).  Subjects given decreased naive-like (CD45RA+CCR7+) CD4+ and CD8+ CAR T cells experienced superior PFS (P = .02 and .04, respectively). There was no association between CAR T-cell peak expansion, persistence, or cytokine changes and PFS. 19-28z CAR T cells following HDT-ASCT were associated with a high incidence of reversible neurotoxicity and CRS. Following HDT-ASCT, effector CD4+ and CD8+ immunophenotypes may improve disease control. This trial was registered at www.clinicaltrials.gov as #NCT01840566.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/therapy , Receptors, Antigen, T-Cell/therapeutic use , Stem Cell Transplantation/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/therapy , Transplantation, Autologous/methods , Treatment Outcome
6.
Neuroreport ; 28(4): 229-233, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28145994

ABSTRACT

This study examined the effects of pulsed focused ultrasound (FUS) in disrupting nerve conduction. FUS operating at a 210 kHz fundamental frequency was administered to the medial and lateral giant axonal nerve fibers of earthworms in a burst of pulses (1 ms tone burst duration, 20 Hz pulse repetition frequency). The magnitude and latencies of the nerve potentials induced by electrical stimulation were measured under three experimental conditions - (I) no sonication, (II) sonication at 600 mW/cm spatial-peak temporal-average intensity (Ispta), and (III) sonication at 200 mW/cm Ispta. The sonication at 600 mW/cm temporarily decreased the magnitude of the action potential peak (~16%), whereas the baseline peak level was quickly restored in postsonication sessions. Sonication administered at a lower intensity (i.e. 200 mW/cm) did not alter the peak magnitude. The sonication did not alter the nerve conduction velocity. The acoustic intensities used in the experiment did not increase the temperature of the sonicated tissue. The results indicate that axonal neurotransmission can be disrupted temporarily by the application of pulsed FUS, suggesting its potential utility in modulating the functional connectivity established by white matter tracts in the brain.


Subject(s)
Axons/radiation effects , Neural Conduction , Sonication , Ultrasonic Waves , Action Potentials/radiation effects , Animals , Oligochaeta
7.
Nutr Res ; 36(12): 1316-1324, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27866830

ABSTRACT

The ubiquitous tripeptide glutathione (GSH) is a critical component of the endogenous antioxidant defense system. Tissue GSH concentrations and redox status (GSH/GSSG) are genetically controlled, but it is unclear whether interactions between genetic background and diet affect GSH homeostasis. The current study tested the hypothesis that a high-fat diet regulates GSH homeostasis in a manner dependent on genetic background. At 4 months of age, female mice representing 3 obesity-prone inbred strains-C57BL/6J (B6), DBA/2J (D2), and AKR/J (AKR)-were randomly assigned to consume a control (10% energy from fat) or high-fat (62% energy from fat) diet for 10 weeks (n=5/diet per strain). Tissue GSH levels, GSSG levels, and GSH/GSSG were quantified, and hepatic expression of GSH-related enzymes was evaluated by quantitative reverse transcription polymerase chain reaction. The high-fat diet caused a decrease in hepatic GSH/GSSG in D2 mice. In contrast, B6 mice exhibited a decrease in GSSG levels in the liver and kidney, as well as a resultant increase in renal GSH/GSSG. AKR mice also exhibited increased renal GSH/GSSG on a high-fat diet. Finally, the high-fat diet induced a unique gene expression response in D2 mice compared with B6 and AKR. The D2 response was characterized by up-regulation of glutamate-cysteine ligase modifier subunit and down-regulation of glutathione reductase, whereas the B6 and AKR responses were characterized by up-regulation of glutathione peroxidase 1. Two-way analysis of variance analyses confirmed several diet-strain interactions within the GSH system, and linear regression models highlighted relationships between body mass and GSH outcomes as well. Overall, our data indicate that dietary fat regulates the GSH system in a strain-dependent manner.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Gene-Environment Interaction , Glutathione/metabolism , Obesity/genetics , Phenotype , Animals , Body Weight , Dietary Fats/administration & dosage , Down-Regulation , Female , Glutamate-Cysteine Ligase/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Homeostasis , Kidney/metabolism , Liver/metabolism , Mice, Inbred AKR , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Obese , Obesity/etiology , Obesity/metabolism , Random Allocation , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation , Glutathione Peroxidase GPX1
8.
Environ Health Perspect ; 122(2): 165-71, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24252436

ABSTRACT

BACKGROUND: Epidemiologic evidence suggests a negative relation between sunlight exposure and breast cancer risk. The hypothesized mechanism is sunlight-induced cutaneous synthesis of vitamin D. OBJECTIVES: Our goal was to examine sun exposure and its interaction with vitamin D receptor (VDR) gene variants on breast cancer risk. METHODS: We examined sun exposure and breast cancer incidence among 31,021 private pesticide applicators' wives, including 578 cases, enrolled in the prospective Agricultural Health Study cohort and followed 8.6 years on average. We estimated interactions between sun exposure, VDR variants, and breast cancer in a nested case-control study comprising 293 cases and 586 matched controls. Information on sun exposure was obtained by questionnaire at cohort enrollment. Relative risks were estimated using Cox proportional hazards regression for the cohort data and conditional logistic regression for the nested case-control data. RESULTS: We observed a small decrease in breast cancer risk in association with usual sun exposure of ≥ 1 hr/day (versus < 1 hr/day) 10 years before the start of follow-up among all participants [hazard ratio (HR) = 0.8; 95% CI: 0.6, 1.0]. The association appeared to be slightly stronger in relation to estrogen receptor-positive tumors (HR = 0.7; 95% CI: 0.5, 0.9) than estrogen receptor-negative tumors (HR = 1.1; 95% CI: 0.6, 2.1). The HR for joint exposure ≥ 1 hr/day of sunlight and one VDR haplotype was less than expected given negative HRs for each individual exposure (interaction p-value = 0.07). CONCLUSION: Our results suggest that sun exposure may be associated with reduced risk of breast cancer, but we did not find clear evidence of modification by VDR variants. Larger studies are warranted, particularly among populations in whom low levels of usual sun exposure can be more precisely characterized.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Genetic Variation , Receptors, Calcitriol/genetics , Sunlight , Agriculture , Case-Control Studies , Cohort Studies , Female , Genotype , Humans , Iowa/epidemiology , Models, Statistical , North Carolina/epidemiology , Proportional Hazards Models
9.
Cancer Epidemiol Biomarkers Prev ; 21(10): 1856-67, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22892281

ABSTRACT

BACKGROUND: Observational and experimental studies suggest that vitamin D may influence breast cancer etiology. Most known effects of vitamin D are mediated via the vitamin D receptor (VDR). Few polymorphisms in the VDR gene have been well studied in relation to breast cancer risk and results have been inconsistent. METHODS: We investigated VDR polymorphisms and haplotypes in relation to breast cancer risk by genotyping 26 single nucleotide polymorphisms (SNP) that (i) had known/suspected impact on VDR function, (ii) were tagging SNPs for the three VDR haplotype blocks among whites, or (iii) were previously associated with breast cancer risk. We estimated odds ratios (OR) and 95% confidence intervals (CI) in relation to breast cancer risk among 270 incident cases and 554 matched controls within the Agricultural Health Study cohort. RESULTS: In individual SNP analyses, homozygous carriers of the minor allele for rs2544038 had significantly increased breast cancer risk (OR = 1.5; 95% CI: 1.0-2.5) and homozygous carriers of the minor allele for rs11168287 had significantly decreased risk (OR = 0.6; 95% CI: 0.4-1.0). Carriers of the minor allele for rs2239181 exhibited marginally significant association with risk (OR = 1.4; 95% CI: 0.9-2.0). Haplotype analyses revealed three haplotype groups (blocks "A," "B," and "C"). Haplotype GTCATTTCCTA in block B was significantly associated with reduced risk (OR = 0.5; 95% CI: 0.3-0.9). CONCLUSIONS: These results suggest that variation in VDR may be associated with breast cancer risk. IMPACT: Our findings may help guide future research needed to define the role of vitamin D in breast cancer prevention.


Subject(s)
Breast Neoplasms/genetics , Haplotypes , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Breast Neoplasms/etiology , Case-Control Studies , Female , Humans , Linkage Disequilibrium , Middle Aged , Prospective Studies , Risk
10.
Int J Cancer ; 130(2): 405-18, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-21365644

ABSTRACT

The vitamin D receptor (VDR) gene has been associated with cancer risk, but only a few polymorphisms have been studied in relation to melanoma risk and the results have been inconsistent. We examined 38 VDR gene single nucleotide polymorphisms (SNPs) in a large international multicenter population-based case-control study of melanoma. Buccal DNAs were obtained from 1,207 people with incident multiple primary melanoma and 2,469 with incident single primary melanoma. SNPs with known or suspected impact on VDR activity, haplotype tagging SNPs with ≥ 10% minor allele frequency in Caucasians, and SNPs reported as significant in other association studies were examined. Logistic regression was used to calculate the relative risks conferred by the individual SNP. Eight of 38 SNPs in the promoter, coding, and 3' gene regions were individually significantly associated with multiple primary melanoma after adjusting for covariates. The estimated increase in risk for individuals who were homozygous for the minor allele ranged from 25 to 33% for six polymorphisms: rs10875712 (odds ratios [OR] 1.28; 95% confidence interval (CI), 1.01-1.62), rs4760674 (OR 1.33; 95% CI, 1.06-1.67), rs7139166 (OR 1.26; 95%CI, 1.02-1.56), rs4516035 (OR 1.25; 95%CI, 1.01-1.55), rs11168287 (OR 1.27; 95%CI, 1.03-1.57) and rs1544410 (OR 1.30; 95%CI, 1.04-1.63); for two polymorphisms, homozygous carriers had a decreased risk: rs7305032 (OR 0.81; 95%CI 0.65-1.02) and rs7965281 (OR, 0.78; 95%CI, 0.62-0.99). We recognize the potential false positive findings because of multiple comparisons; however, the eight significant SNPs in our study outnumbered the two significant tests expected to occur by chance. The VDR may play a role in melanomagenesis.


Subject(s)
Melanoma/genetics , Receptors, Calcitriol/genetics , Skin Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Melanoma/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , Skin Neoplasms/epidemiology
11.
Hum Hered ; 72(1): 21-34, 2011.
Article in English | MEDLINE | ID: mdl-21849791

ABSTRACT

Though genome-wide association studies (GWAS) have identified numerous susceptibility loci for common diseases, their use is limited due to the expense of genotyping large cohorts of individuals. One potential solution is to use 'additional controls', or genotype data from control individuals deposited in public repositories. While this approach has been used by several groups, the genetically heterogeneous nature of the population of the United States makes this approach potentially problematic. We empirically investigated the utility of this approach in a US-based GWAS. In a small GWAS of pancreatic cancer in New York, we observed clear population structure differences relative to controls from the database of Genotypes and Phenotypes (dbGaP). When we conduct the GWAS using these additional controls, we find large inflation of the test statistic that is properly corrected by using eigenvectors from principal components analysis as covariates. To deal with errors introduced due to different sources, we propose simultaneously genotyping a small number of controls along with cases and then comparing this group to the additional controls. We show that removing SNPs that show differences between these control groups reduces false-positive findings. Thus, through an empirical approach, this report provides practical guidance for using additional controls from publicly available datasets.


Subject(s)
Control Groups , Databases, Genetic , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study/methods , Pancreatic Neoplasms/genetics , Genotype , Humans , New York , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...