Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860477

ABSTRACT

Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.

2.
Nanoscale ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766759

ABSTRACT

The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.

3.
Nat Mater ; 23(4): 552-559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316979

ABSTRACT

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g-1 h-1 with a turnover frequency of 1.27 s-1. Furthermore, it generates 42.2 mmol gsub-1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.

4.
Chem Commun (Camb) ; 60(10): 1289-1292, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38197160

ABSTRACT

Manipulating the atomic-level structure of the subshell of a nanocluster while preserving the inner and outer shell structure is challenging. We present the synthesis and molecular structure of an alkynyl-protected Au34Ag27 nanocluster, which exhibits distinct third shell atomic arrangement, electronic structure, and optical properties from those of the Au34Ag28 nanocluster.

5.
Adv Mater ; 36(13): e2313032, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38113897

ABSTRACT

The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2RR activity (CO Faradaic efficiency, FECO: 90.3%) with higher CO partial current density (jCO) in an H-cell compared to Ag25 cluster (FECO: 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2. Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.

6.
J Am Chem Soc ; 145(50): 27407-27414, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055351

ABSTRACT

Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.

7.
Prog Neurobiol ; 210: 102217, 2022 03.
Article in English | MEDLINE | ID: mdl-34999186

ABSTRACT

The fasciola cinereum (FC) is a subregion of the hippocampus that has received relatively little attention compared with other hippocampal subregions with respect to anatomical characteristics and functional significance. Here, we show that the FC exhibits clear anatomical borders with the distalmost region of the CA1. Principal neurons in the FC resemble the granule cells in the dentate gyrus (DG). However, adult neurogenesis was not found unlike in the DG. The FC receives inputs mostly from the lateral entorhinal cortex and perirhinal cortex while projecting exclusively to the crest of the DG within the hippocampus. Neurotoxic lesions in the FC using colchicine impaired the acquisition, but not retrieval, of visual contextual memory in rats. FC lesions also impaired place recognition and object-in-place memory. As the rat performed the contextual memory task on the T-maze, place cells in the FC exhibited robust place fields and were indiscriminable from those in CA1 with respect to the basic firing properties. However, place cells in the FC fired only transiently in their place fields on the maze compared with those in CA1. Our findings suggest that the episodic firing patterns of the place cells in the FC may play critical roles in learning a novel contextual environment by facilitating temoporally structured contextual pattern separation in the DG of the hippocampus.


Subject(s)
Fasciola , Animals , Hippocampus/physiology , Humans , Learning/physiology , Memory/physiology , Neurons/physiology , Rats
8.
Cells ; 10(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34359946

ABSTRACT

Hyperlipidemia and hypertension are modifiable risk factors for cognitive decline. About 25% of adults over age 65 use both antihypertensives (AHTs) and statins to treat these conditions. Recent research in humans suggests that their combined use may delay or prevent dementia onset. However, it is not clear whether and how combination treatment may benefit brain function. To begin to address this question, we examined effects of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and Captopril, an angiotensin-converting enzyme inhibitor (ACEI), administration on memory function, anxiety-like behavior, adult hippocampal neurogenesis and angiogenesis in adult and middle-aged male C57Bl/6J mice. In adult mice (3-months-old) combination (combo) treatment, as well as administration of each compound individually, for six weeks, accelerated memory extinction in contextual fear conditioning. However, pattern separation in the touchscreen-based location discrimination test, a behavior linked to adult hippocampal neurogenesis, was unchanged. In addition, dentate gyrus (DG) neurogenesis and vascularization were unaffected. In middle-aged mice (10-months-old) combo treatment had no effect on spatial memory in the Morris water maze, but did reduce anxiety in the open field test. A potential underlying mechanism may be the modest increase in new hippocampal neurons (~20%) in the combo as compared to the control group. DG vascularization was not altered. Overall, our findings suggest that statin and anti-hypertensive treatment may serve as a potential pharmacotherapeutic approach for anxiety, in particular for post-traumatic stress disorder (PTSD) patients who have impairments in extinction of aversive memories.


Subject(s)
Age Factors , Antihypertensive Agents/pharmacology , Fear/drug effects , Memory/drug effects , Neurogenesis/drug effects , Animals , Extinction, Psychological/drug effects , Fear/physiology , Hippocampus/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/physiology
9.
Hippocampus ; 31(7): 717-736, 2021 07.
Article in English | MEDLINE | ID: mdl-33394547

ABSTRACT

The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The "dual-stream model" was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual-stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal-directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal-directed Interaction of Stimulus and Task-demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices-the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects-with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non-navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non-navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.


Subject(s)
Goals , Perirhinal Cortex , Entorhinal Cortex/physiology , Hippocampus/physiology , Neural Pathways/physiology , Parahippocampal Gyrus/physiology , Perirhinal Cortex/physiology , Temporal Lobe/physiology
10.
Front Neurosci ; 13: 74, 2019.
Article in English | MEDLINE | ID: mdl-30809115

ABSTRACT

Objective: Humans interpret sensory inputs based on actual stimuli and expectations of the stimuli. We investigated whether manipulating information related to the physiological response could change the somatosensory experience of acupuncture. Methods: Twenty-four participants received tactile stimulations with a von Frey filament on the left arm. Participants were informed that they would receive acupuncture stimulations at different angles while they were presented with changes in their peripheral blood flow (PBF) measured with Laser Doppler perfusion imaging. However, in reality, they were observing premade pseudo-biosignal images (six sessions: one circular, two rectangular elongated, two diagonally elongated, and one cross-fixation [control] shape). After each session, the participants reported the intensity and location of the de qi sensations perceived on their arm using a bodily sensation mapping tool. The spatial patterns of the somatic sensations were visualized using statistical parametric mapping. The F1 score was calculated to measure the similarity between the presented pseudo-biosignals and reported de qi response images. Results: The spatial configurations of the presented pseudo-biosignal images and de qi response images were similar. The rectangular elongated pseudo-biosignal shape had a significantly higher F1 score compared to the control. All tactile stimulations produced similar levels of enhanced PBF regardless of the pseudo-biosignal shape. Conclusion: The spatial configurations of somatic sensations changed according to the presented pseudo-biosignal shape, suggesting that expectations of the physiological response to acupuncture stimulation can influence the perceived somatic sensation.

11.
Trends Cogn Sci ; 23(4): 318-333, 2019 04.
Article in English | MEDLINE | ID: mdl-30777641

ABSTRACT

No medications prevent or reverse age-related cognitive decline. Physical activity (PA) enhances memory in rodents, but findings are mixed in human studies. As a result, exercise guidelines specific for brain health are absent. Here, we re-examine results from human studies, and suggest the use of more sensitive tasks to evaluate PA effects on age-related changes in the hippocampus, such as relational memory and mnemonic discrimination. We discuss recent advances from rodent and human studies into the underlying mechanisms at both the central and peripheral levels, including neurotrophins and myokines that could contribute to improved memory. Finally, we suggest guidelines for future research to help expedite well-founded PA recommendations for the public.


Subject(s)
Aging/physiology , Exercise/physiology , Hippocampus/physiology , Memory/physiology , Animals , Humans
13.
Elife ; 62017 02 07.
Article in English | MEDLINE | ID: mdl-28169828

ABSTRACT

How visual scene memory is processed differentially by the upstream structures of the hippocampus is largely unknown. We sought to dissociate functionally the lateral and medial subdivisions of the entorhinal cortex (LEC and MEC, respectively) in visual scene-dependent tasks by temporarily inactivating the LEC and MEC in the same rat. When the rat made spatial choices in a T-maze using visual scenes displayed on LCD screens, the inactivation of the MEC but not the LEC produced severe deficits in performance. However, when the task required the animal to push a jar or to dig in the sand in the jar using the same scene stimuli, the LEC but not the MEC became important. Our findings suggest that the entorhinal cortex is critical for scene-dependent mnemonic behavior, and the response modality may interact with a sensory modality to determine the involvement of the LEC and MEC in scene-based memory tasks.


Subject(s)
Choice Behavior , Entorhinal Cortex/physiology , Spatial Behavior , Animals , Neural Pathways/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...