Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835315

ABSTRACT

The octahedral symmetry in ionic crystals can play a critical role in atomic nucleation and migration during solid-solid phase transformation. Similarly, octahedron distortion, which is characterized by Goldschmidt tolerance factor, strongly influences the exsolution kinetics in the perovskite lattice framework during high-temperature annealing. However, a fundamental study on manipulating the exsolution process by octahedron distortion is still lacking. In this study, we accelerate Ni metal exsolution on the surface of perovskite stannates by increasing the [BO6] octahedron distortion in the lattices. Decreasing the A-site ionic radius (rBa2+ = 161 pm → rSr2+ = 144 pm → rCa2+ = 134 pm) increased the density of exsolved Ni nanoparticles by up to 640% (i.e., 47 particles µm-2 of Ba(Sn, Ni)O3 → 304 particles µm-2 of Ca(Sn, Ni)O3) after the identical exsolution process. Based on the theoretical calculation and experimental characterization, the decrease in crystal symmetry by octahedral distortion promoted the Ni exsolution owing to the boosted Ni migration by weakening the bond strength and generating domain boundaries. The findings highlight the importance of octahedral distortion to control atomic migration through the perovskite lattice framework and provide a strategy to tailor the density of uniformly populated nanoparticles in nanocomposite oxides for multifunctional material design.

3.
Adv Mater ; 34(5): e2107650, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34783077

ABSTRACT

Programmable optoelectronic devices call for the reversible control of the photocarrier recombination process by in-gap states in oxide semiconductors. However, previous approaches to produce oxygen vacancies as a source of in-gap states in oxide semiconductors have hampered the reversible formation of oxygen vacancies and their related phenomena. Here, a new strategy to manipulate the 2D photoconductivity from perovskite stannates is demonstrated by exploiting spatially selective photochemical reaction under ultraviolet illumination at room temperature. Remarkably, the ideal trap-free photocurrent of air-illuminated BaSnO3 (≈200 pA) is reversibly switched into three orders of magnitude higher photocurrent of vacuum-illuminated BaSnO3 (≈335 nA) with persistent photoconductivity depending on ambient oxygen pressure under illumination. Multiple characterizations elucidate that ultraviolet illumination of BaSnO3  under low oxygen pressure induces surface oxygen vacancies as a result of surface photolysis combined with the low oxygen-diffusion coefficient of BaSnO3 ; the concentrated oxygen vacancies are likely to induce a two-step transition of photocurrent response by changing the characteristics of in-gap states from the shallow level to the deep level. These results suggest a novel strategy that uses light-matter interaction in a reversible and spatially confined way to manipulate functionalities related to surface defect states, for the emerging applications using newly discovered oxide semiconductors.

4.
J Phys Condens Matter ; 32(40): 405607, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32570228

ABSTRACT

NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffraction, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% (compressive) to 0.48% (tensile) yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ∼1% change of interatomic distances. The magnetic exchange-driven phonon splitting Δω in three different samples, with relaxed (i.e. zero) strain, 0.36% compressive strain and 0.48% tensile strain, was measured as a function of temperature. The Δω increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Δω is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J 1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing of J 1 with lattice expansion. Increase of Δω on cooling can be also explained by rising of J 1 with reduced temperature.

5.
Nano Lett ; 20(5): 3538-3544, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32271584

ABSTRACT

In situ exsolution of metal nanoparticles (NPs) is emerging as an alternative technique to deliver thermally stable and evenly dispersed metal NPs, which exhibit excellent adhesion with conducting perovskite oxide supports. Here we provide the first demonstration that Ni metal NPs with high areal density (∼175 µm-2) and fine size (∼38.65 nm) are exsolved from an A-site-deficient perovskite stannate support (La0.2Ba0.7Sn0.9Ni0.1O3-δ (LBSNO)). The NPs are strongly anchored and impart coking resistance, and the Ni-exsolved stannates show exceptionally high electrical conductivity (∼700 S·cm-1). The excellent conductivity is attributed to conduction between delocalized Sn 5s orbitals along with structural improvement toward ABO3 stoichiometry in the stannate support. We also reveal that experimental conditions with strong interaction must be optimized to obtain Ni exsolution without degrading the perovskite stannate framework. Our finding suggests a unique process to induce the formation of metal NPs embedded in stannate with excellent electrical properties.

6.
Nat Commun ; 11(1): 1401, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32179741

ABSTRACT

Heterogeneous interfaces exhibit the unique phenomena by the redistribution of charged species to equilibrate the chemical potentials. Despite recent studies on the electronic charge accumulation across chemically inert interfaces, the systematic research to investigate massive reconfiguration of charged ions has been limited in heterostructures with chemically reacting interfaces so far. Here, we demonstrate that a chemical potential mismatch controls oxygen ionic transport across TiO2/VO2 interfaces, and that this directional transport unprecedentedly stabilizes high-quality rutile TiO2 epitaxial films at the lowest temperature (≤ 150 °C) ever reported, at which rutile phase is difficult to be crystallized. Comprehensive characterizations reveal that this unconventional low-temperature epitaxy of rutile TiO2 phase is achieved by lowering the activation barrier by increasing the "effective" oxygen pressure through a facile ionic pathway from VO2-δ sacrificial templates. This discovery shows a robust control of defect-induced properties at oxide interfaces by the mismatch of thermodynamic driving force, and also suggests a strategy to overcome a kinetic barrier to phase stabilization at exceptionally low temperature.

7.
ACS Appl Mater Interfaces ; 11(27): 24221-24229, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246395

ABSTRACT

Super-steep two-terminal electronic devices using NbO2, which abruptly switch from insulator to metal at a threshold voltage (Vth), offer diverse strategies for energy-efficient and high-density device architecture to overcome fundamental limitation in current electronics. However, the tight control of stoichiometry and high-temperature processing limit practical implementation of NbO2 as a component of device integration. Here, we demonstrate a facile room-temperature process that uses solid-solid phase transformation induced by pulsed laser to fabricate NbO2-based threshold switches. Interestingly, pulsed laser annealing under a reducing environment facilitates a two-step nucleation pathway (a-Nb2O5 → o-Nb2O5-δ → t-NbO2) of the threshold-enabled NbO2 phase mediated by oxygen vacancies in o-Nb2O5-δ. The laser-annealed devices with embedded NbO2 crystallites exhibit excellent threshold device performance with low off-current and high on/off current ratio. Our strategy that exploits the interactions of pulsed lasers with multivalent metal oxides can guide the development of a rational route to achieve NbO2-based threshold switches that are compatible with current semiconductor fabrication technology.

8.
J Am Chem Soc ; 141(18): 7509-7517, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998333

ABSTRACT

Nucleation of nanoparticles using the exsolution phenomenon is a promising pathway to design durable and active materials for catalysis and renewable energy. Here, we focus on the impact of surface orientation of the host lattice on the nucleation dynamics to resolve questions with regards to "preferential nucleation sites". For this, we carried out a systematic model study on three differently oriented perovskite thin films. Remarkably, in contrast to the previous bulk powder-based study suggesting that the (110)-surface is a preferred plane for exsolution, we identify that other planes such as (001)- and (111)-facets also reveal vigorous exsolution. Moreover, particle size and surface coverage vary significantly depending on the surface orientation. Exsolution of (111)-oriented film produces the largest number of particles, the smallest particle size, the deepest embedment, and the smallest and most uniform interparticle distance among the oriented films. Based on classic nucleation theory, we elucidate that the differences in interfacial energies as a function of substrate orientation play a crucial role in controlling the distinct morphology and nucleation behavior of exsolved nanoparticles. Our finding suggests new design principles for tunable solid-state catalyst or nanoscale metal decoration.

SELECTION OF CITATIONS
SEARCH DETAIL
...