Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712190

ABSTRACT

Anorexia nervosa (AN) is an eating disorder observed primarily in girls and women, and is characterized by a low body mass index, hypophagia, and hyperactivity. The activity-based anorexia (ABA) paradigm models aspects of AN, and refers to the progressive weight loss, hypophagia, and hyperactivity developed by rodents exposed to time-restricted feeding and running wheel access. Recent studies identified white adipose tissue (WAT) as a primary location of the 'metabolic memory' of prior obesity, and implicated WAT-derived signals as drivers of recidivism to obesity following weight loss. Here, we tested whether an obese WAT transplant could attenuate ABA-induced weight loss in normal female mice. Recipient mice received a WAT transplant harvested from normal chow-fed, or HFD-fed obese mice; obese fat recipient (OFR) and control fat recipient (CFR) mice were then tested for ABA. During ABA, OFR mice survived longer than CFR mice, defined as maintaining 75% of their initial body weight. Next, we tested whether agouti-related peptide (AgRP) neurons, which regulate feeding behavior and metabolic sensing, mediate this effect of obese WAT transplant. CFR and OFR mice received either control or neonatal AgRP ablation, and were assessed for ABA. OFR intact mice maintained higher body weights longer than CFR intact mice, and this effect was abolished by neonatal AgRP ablation; further, ablation reduced survival in OFR, but not CFR mice. In summary, obese WAT transplant communicates with AgRP neurons to increase body weight maintenance during ABA. These findings encourage the examination of obese WAT-derived factors as potential treatments for AN.

2.
Mol Metab ; 76: 101794, 2023 10.
Article in English | MEDLINE | ID: mdl-37604246

ABSTRACT

OBJECTIVE: Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS: We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS: Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS: These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.


Subject(s)
Obesity , Weight Gain , Animals , Mice , Mice, Obese , Body Weight , Mice, Knockout , Eating , Chloride Channels/genetics , Antigens, Neoplasm , Proteins
3.
Materials (Basel) ; 15(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234259

ABSTRACT

We investigated the selective etching of Si versus Si1−xGex with various Ge concentrations (x = 0.13, 0.21, 0.30, 0.44) in tetramethyl ammonium hydroxide (TMAH) solution. Our results show that the Si1−xGex with a higher Ge concentration was etched slower due to the reduction in the Si(Ge)−OH bond. Owing to the difference in the etching rate, Si was selectively etched in the Si0.7Ge0.3/Si/Si0.7Ge0.3 multi-layer. The etching rate of Si depends on the Si surface orientation, as TMAH is an anisotropic etchant. The (111) and (010) facets were formed in TMAH, when Si was laterally etched in the <110> and <100> directions in the multi-layer, respectively. We also investigated the effect of the addition of Triton X-100 in TMAH on the wet etching process. Our results confirmed that the presence of 0.1 vol% Triton reduced the roughness of the etched Si and Si1−xGex surfaces. Moreover, the addition of Triton to TMAH could change the facet formation from (010) to (011) during Si etching in the <100>-direction. The facet change could reduce the lateral etching rate of Si and consequently reduce selectivity. The decrease in the layer thickness also reduced the lateral Si etching rate in the multi-layer.

4.
Schizophrenia (Heidelb) ; 8(1): 70, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042214

ABSTRACT

Antipsychotic drugs (AP) are highly efficacious treatments for psychiatric disorders but are associated with significant metabolic side-effects. The circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding, fasting and hormone regulation but how circadian rhythms interact with AP and its associated metabolic side-effects is not well-known. We hypothesized that time of AP dosing impacts the development of metabolic side-effects. Weight gain and metabolic side-effects were compared in C57Bl/6 mice and humans dosed with APs in either the morning or evening. In mice, AP dosing at the start of the light cycle/rest period (AM) resulted in significant increase in food intake and weight gain compared with equivalent dose before the onset of darkness/active period (PM). Time of AP dosing also impacted circadian gene expression, metabolic hormones and inflammatory pathways and their diurnal expression patterns. We also conducted a retrospective examination of weight and metabolic outcomes in patients who received risperidone (RIS) for the treatment of serious mental illness and observed a significant association between time of dosing and severity of RIS-induced metabolic side-effects. Time restricted feeding (TRF) has been shown in both mouse and some human studies to be an effective therapeutic intervention against obesity and metabolic disease. We demonstrate, for the first time, that TRF is an effective intervention to reduce AP-induced metabolic side effects in mice. These studies identify highly effective and translatable interventions with potential to mitigate AP-induced metabolic side effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...