Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Vaccines (Basel) ; 12(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543967

ABSTRACT

Varicella-zoster virus (VZV) poses lifelong risks, causing varicella and herpes zoster (HZ, shingles). Currently, varicella and HZ vaccines are predominantly live attenuated vaccines or adjuvanted subunit vaccines utilizing VZV glycoprotein E (gE). Here, we propose our vaccine candidates involving a comparative analysis between recombinant baculoviral vector vaccines (AcHERV) and a live attenuated vaccine strain, vOka. AcHERV vaccine candidates were categorized into groups encoding gE only, VZV glycoprotein B (gB) only, or both gE and gB (gE-gB) as AcHERV-gE, AcHERV-gB, and AcHERV-gE-gB, respectively. Humoral immune responses were evaluated by analyzing total IgG, IgG1, IgG2a, and neutralizing antibodies. Cell-mediated immunity (CMI) responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and Th1/Th2/Th17 cytokine profiling. In the mouse model, AcHERV-gE-gB elicited similar or higher total IgG, IgG2a, and neutralizing antibody levels than vOka and showed robust VZV-specific CMI responses. From the perspective of antigens encoded in vaccines and their relationship with CMI response, both AcHERV-gB and AcHERV-gE-gB demonstrated results equal to or superior to AcHERV-gE, encoding only gE. Taken together, these results suggest that AcHERV-gE-gB can be a novel candidate for alleviating risks of live attenuated vaccine-induced latency and effectively preventing varicella during early stages of life while providing strong CMI for effective resistance against HZ and therapeutic potential in later stages of life.

2.
J Microbiol Biotechnol ; 34(2): 240-248, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37942548

ABSTRACT

In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.


Subject(s)
Breast Neoplasms , Phthalic Acids , Humans , Female , Breast Neoplasms/drug therapy , PPAR gamma/genetics , Phenol/pharmacology , Phenols/pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Cell Line, Tumor , Cell Proliferation , Cell Movement
3.
Biofactors ; 50(2): 294-310, 2024.
Article in English | MEDLINE | ID: mdl-37658685

ABSTRACT

Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.


Subject(s)
Breast Neoplasms , Interleukins , Triple Negative Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokines , Epithelial-Mesenchymal Transition/genetics , Glycogen Synthase Kinase 3/metabolism , Interleukins/genetics , Interleukins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
4.
J Microbiol Biotechnol ; 34(1): 185-191, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-37830223

ABSTRACT

Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Tissue Distribution , Viral Vaccines/genetics , Antibodies, Viral
5.
Life Sci ; 336: 122288, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38007146

ABSTRACT

AIMS: Protectin DX (PDX), a specialized pro-resolving mediator, is an important pharmaceutical compound with potential antioxidant and inflammation-resolving effects. However, the fundamental mechanism by which PDX's ameliorate chronic inflammatory diseases has not yet been elucidated. This study aims to evaluate the anti-inflammatory properties and PPARγ-mediated mechanisms of PDX in phorbal-12-mysristate-13-acetate (PMA)-stimulated human promonocytic U937 cells. MAIN METHODS: We confirmed the effects of PDX on expressions of pro-inflammatory cytokines, mediators, and CD14 using conventional PCR, RT-qPCR, ELISA, and flow cytometry. Using western blotting, immunofluorescence, and reactive oxygen species (ROS) determination, we observed that PDX regulated PMA-induced signaling cascades. Molecular docking analysis and a cellular thermal shift assay were conducted to verify the interaction between PDX and the proliferator-activated receptor-γ (PPARγ) ligand binding domain. Western blotting was then employed to explore the alterations in PPARγ expression levels and validate PDX as a PPARγ full agonist. KEY FINDINGS: PDX attenuated protein and mRNA expression levels of interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in PMA-treated U937 cells. PDX acts as a PPARγ agonist, exerting a modulating effect on the ROS/JNK/c-Fos signaling pathways. Furthermore, PDX reduced human monocyte differentiation antigen CD14 expression levels. SIGNIFICANCE: PPARγ exhibits pro-resolving effects to regulate the excessive inflammation. These results suggest that PDX demonstrates the resolution of inflammation, indicating the potential for therapeutic targeting of chronic inflammatory diseases.


Subject(s)
Inflammation , PPAR gamma , Humans , U937 Cells , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Inflammation/chemically induced , Inflammation/drug therapy
6.
J Microbiol Biotechnol ; 34(3): 506-515, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-37994116

ABSTRACT

Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/ß-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.


Subject(s)
Human papillomavirus 16 , Oncogene Proteins, Viral , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomaviridae/genetics , Papillomaviridae/metabolism
7.
BMB Rep ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964635

ABSTRACT

Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

8.
Front Immunol ; 14: 1160301, 2023.
Article in English | MEDLINE | ID: mdl-37228610

ABSTRACT

Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues. It means that alanine was also replaced to valine at position 94 in amino acid sequence (A94V). In this study, we investigated the cell surface receptors of IL-32θA94V and evaluated their effect on human umbilical vein endothelial cells (HUVECs). Recombinant human IL-32θA94V was expressed, isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose columns. We observed that IL-32θA94V could bind to the integrins αVß3 and αVß6, suggesting that integrins act as cell surface receptors for IL-32θA94V. IL-32θA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-α-stimulated HUVECs. IL-32θA94V also reduced the TNF-α-induced phosphorylation of protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32θA94V regulated the nuclear translocation of nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression. Monocyte-endothelial adhesion mediated by ICAM-1 and VCAM-1 is an important early step in atherosclerosis, which is a major cause of cardiovascular disease. Our findings suggest that IL-32θA94V binds to the cell surface receptors, integrins αVß3 and αVß6, and attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated HUVECs. These results demonstrate that IL-32θA94V can act as an anti-inflammatory cytokine in a chronic inflammatory disease such as atherosclerosis.


Subject(s)
Atherosclerosis , Vascular Cell Adhesion Molecule-1 , Humans , Atherosclerosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Integrin alphaVbeta3/genetics , Integrin alphaVbeta3/metabolism , Intercellular Adhesion Molecule-1/metabolism , Monocytes/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
9.
Int Immunopharmacol ; 120: 110298, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207444

ABSTRACT

Chronic skin inflammatory diseases are associated with abnormal immune responses characterized by skin barrier dysfunction. Keratinocytes participate in immune homeostasis regulated by immune cells. Immune homeostasis dysfunction contributes to the pathogenesis of skin diseases mediated by pro-inflammatory cytokines and chemokines, such as tumor necrosis factor (TNF)-α, which are produced by activated keratinocytes. 12(S)-Hydroxy eicosatetraenoic acid [12(S)-HETE], an arachidonic acid metabolite, has anti-inflammatory properties. However, the role of 12(S)-HETE in chronic skin inflammatory diseases has not been elucidated yet. In this study, we investigated the effect of 12(S)-HETE on TNF-α/interferon (IFN)-γ-induced pro-inflammatory cytokine and chemokine expression. Our data showed that 12(S)-HETE modulates TNF-α mRNA and protein expression in TNF-α-/IFN-γ-treated human keratinocytes. Molecular docking analyses demonstrated that 12(S)-HETE bound to extracellular signal-regulated kinase (ERK)1/2, thus preventing ERK activation and downregulating phosphorylated ERK expression. We also demonstrated that 12(S)-HETE treatment inhibited IκB and ERK phosphorylation and nuclear factor (NF)-κB, p65/p50, and CCAAT/enhancerbindingproteinß (C/EBPß) translocation. Overall, our results showed that 12(S)-HETE attenuated TNF-α expression and secretion by inhibiting the mitogen-activated protein kinase ERK/NF-κB and C/EBPß signaling pathways. Overall, these results suggest that 12(S)-HETE effectively resolved TNF-α-induced inflammation.


Subject(s)
Keratinocytes , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Molecular Docking Simulation , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Chemokines/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Hydroxyeicosatetraenoic Acids/metabolism , Fatty Acids/pharmacology
10.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37111237

ABSTRACT

(E)-2-methoxy-4-[3-(4-methoxyphenyl) prop-1-en-1-yl] phenol (MMPP), a novel synthetic analog of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB), exerts anti-inflammatory and anticancer effects by downregulating the STAT3 pathway. It has also been recently reported that MMPP can act as a PPAR agonist which enhances glucose uptake and increases insulin sensitivity. However, it has not yet been elucidated whether MMPP can act as an antagonist of MD2 and inhibit MD2-dependent pathways. In this study, we evaluated the underlying modulatory effect of MMPP on inflammatory responses in LPS-stimulated THP-1 monocytes. MMPP inhibited the LPS-induced expression of inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, as well as the inflammatory mediator COX-2. MMPP also alleviated the IKKαß/IκBα and JNK pathways and the nuclear translocation of NF-κB p50 and c-Jun in LPS-stimulated THP-1 monocytes. In addition, the molecular docking analyses and in vitro binding assay revealed that MMPP can directly bind to CD14 and MD2, which are expressed in the plasma membrane, to recognize LPS first. Collectively, MMPP was directly bound to CD14 and MD2 and inhibited the activation of the NF-κB and JNK/AP-1 pathways, which then exerted anti-inflammatory activity. Accordingly, MMPP may be a candidate MD2 inhibitor targeting TLR4, which exerts anti-inflammatory effects.

11.
Phytomedicine ; 112: 154685, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36753827

ABSTRACT

BACKGROUND: Cinnamomum verum J. Presl (Cinnamon) is widely used in the food and pharmaceutical industries. C. verum exhibits various biological activities. However, it is unclear whether C. verum can inhibit NOX, a major source of ROS generation, and exert anti-inflammatory and antioxidant effects in PMA-stimulated THP-1 cells. PURPOSE: This study investigates the anti-inflammatory and antioxidant effects of C. verum in PMA-stimulated THP-1 cells. METHODS: The MeOH extract of C. verum was analyzed using UPLC-QTOF/MS. Anti-inflammatory and antioxidant effects of C. verum extract were examined by DCF-DA staining, immunofluorescence staining, RT-PCR, and immunoblotting in PMA-stimulated THP-1 cells. RESULTS: C. verum and its components, cinnamic acid and coumarin, significantly attenuated the expression of IL-1ß, IL-8, CCL5, and COX-2 in PMA-stimulated THP-1. C. verum decreased ROS levels via NOX2 downregulation, as well as ameliorated plasma membrane translocation of PKCδ and decreased JNK phosphorylation. Besides, C. verum suppressed the nuclear translocation of AP-1 and NF-κB, which modulates diverse pro-inflammatory genes. CONCLUSION: C. verum effectively inhibits inflammation and oxidative stress during monocyte-macrophage differentiation and downregulates inflammatory mediators via NOX2/ROS and PKCδ/JNK/AP-1/NF-κB signaling.


Subject(s)
Monocytes , NF-kappa B , NF-kappa B/metabolism , Cinnamomum zeylanicum , Signal Transduction , Reactive Oxygen Species/metabolism , Transcription Factor AP-1/metabolism , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Lipopolysaccharides/pharmacology
12.
Front Pharmacol ; 13: 994584, 2022.
Article in English | MEDLINE | ID: mdl-36339572

ABSTRACT

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor involved in adipogenesis, and its transcriptional activity depends on its ligands. Thiazolidinediones (TZDs), well-known PPARγ agonists, are drugs that improve insulin resistance in type 2 diabetes. However, TZDs are associated with severe adverse effects. As current therapies are not well designed, novel PPARγ agonists have been investigated in adipocytes. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) is known to have anti-arthritic, anti-inflammatory, and anti-cancer effects. In this study, we demonstrated the adipogenic effects of MMPP on the regulation of PPARγ transcriptional activity during adipocyte differentiation in vitro. MMPP treatment increased PPARγ transcriptional activity, and molecular docking studies revealed that MMPP binds directly to the PPARγ ligand binding domain. MMPP and rosiglitazone showed similar binding affinities to the PPARγ. MMPP significantly promoted lipid accumulation in adipocyte cells and increased the expression of C/EBPß and the levels of p-AKT, p-GSK3, and p-AMPKα at an early stage. MMPP enhanced the expression of adipogenic markers such as PPARγ, C/EBPα, FAS, ACC, GLUT4, FABP4 and adiponectin in the late stage. MMPP also improved insulin sensitivity by increasing glucose uptake. Thus, MMPP, as a PPARγ agonist, may be a potential drug for type 2 diabetes and metabolic disorders, which may help increase adipogenesis and insulin sensitivity.

13.
Ecotoxicol Environ Saf ; 232: 113252, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35104780

ABSTRACT

11 S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid (DoPE) is a derivative of docosapentaenoic acid, a specialized pro-resolving mediator of inflammation such as lipoxins, resolvins, maresins, and protectins. PM10 is a fine dust particle that induces oxidative stress, DNA damage, inflammation, aging, and cancer. The anti-inflammatory mechanism of DoPE, however, has not yet been elucidated. In these studies, we investigated whether DoPE has anti-inflammatory effects in human keratinocyte HaCaT cells. We demonstrated that DoPE suppressed PM10-induced expressions of IL-6 mRNA and protein in human HaCaT keratinocytes. We also investigated the modulating effects of DoPE on reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK). ROS production, extracellular signal regulated kinase (ERK) phosphorylation, and translocation of nuclear factor-kappa B (NF-kB) p65 and NF-kB activity were suppressed by DoPE in PM10-stimulated HaCaT cells. Collectively, our results demonstrated that DoPE inhibited IL-6 expression by reducing ROS generation, suppressing ERK phosphorylation, and inhibiting translocation of NF-kB p65 and NF-kB activity in PM10-stimulated HaCaT cells, suggesting that DoPE can be useful for the resolution of the inflammation caused by IL-6.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , NF-kappa B , Dust , Extracellular Signal-Regulated MAP Kinases/metabolism , Fatty Acids, Unsaturated , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Keratinocytes , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism
14.
Article in English | MEDLINE | ID: mdl-34902567

ABSTRACT

Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second­oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first­oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.


Subject(s)
Arachidonate Lipoxygenases
15.
Int J Mol Sci ; 22(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067074

ABSTRACT

The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express IL-32θ, with MDA-MB-231 cells transfected with a mock vector. Slower growth was observed in cells expressing IL-32θ than in control cells, and changes were noted in nuclear morphology, mitotic division, and nucleolar size between the two groups of cells. Interleukin-32θ significantly reduced the colony-forming ability of MDA-MB-231 cells and induced permanent cell cycle arrest at the G1 phase. Long-term IL-32θ accumulation triggered permanent senescence and chromosomal instability in MDA-MB-231 cells. Genotoxic drug doxorubicin (DR) reduced the viability of MDA-MB-231 cells not expressing IL-32θ more than in cells expressing IL-32θ. Overall, these findings suggest that IL-32θ exerts antiproliferative effects in breast cancer cells and initiates senescence, which may cause DR resistance. Therefore, targeting IL-32θ in combination with DR treatment may not be suitable for treating metastatic breast cancer.


Subject(s)
Cellular Senescence/drug effects , Doxorubicin/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , Interleukins/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cell Nucleus Shape/drug effects , Cell Proliferation/drug effects , Female , Genomic Instability , Humans , Phenotype , Ploidies
16.
J Microbiol Biotechnol ; 31(5): 705-709, 2021 May 28.
Article in English | MEDLINE | ID: mdl-33820889

ABSTRACT

Porphyromonas gingivalis (P. gingivalis) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer's disease, and rheumatism. Thus, a precise and sensitive test to detect P. gingivalis is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for P. gingivalis. First, we performed a visual membrane immunoassay using 3,3',5,5'-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the P. gingivalis surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103-105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that P. gingivalis could be detected without crossreactivity to other bacteria, including Streptococcus mutans and Escherichia fergusonii. Furthermore, three clinical strains of P. gingivalis, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for P. gingivalis detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for P. gingivalis.


Subject(s)
Bacteriological Techniques/methods , Porphyromonas gingivalis/isolation & purification , Colorimetry , Gingipain Cysteine Endopeptidases/immunology , Humans , Immunoenzyme Techniques , Limit of Detection , Periodontitis/diagnosis , Periodontitis/microbiology , Porphyromonas gingivalis/immunology
17.
Biomedicines ; 8(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371351

ABSTRACT

The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.

18.
Biochem Biophys Res Commun ; 529(3): 635-641, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736685

ABSTRACT

Keratinocyte hyperproliferation is an essential link in skin cancer pathogenesis. Peroxiredoxin I (Prx I) is known to regulate cancer cell proliferation, differentiation, and apoptosis, but its role in skin cancer remains unclear. This study aimed to elucidate the role and mechanism of Prx I in skin cancer pathogenesis. Dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were used to create a skin tumor model of the initiation/promotion stage of cancer. The role of Prx I in H2O2-induced keratinocyte apoptosis was also investigated. After DMBA/TPA treatment, Prx I deficiency was significantly associated with less skin tumors, lower Bcl-2 expression, and higher p-p38 and cleaved caspase-3 expressions in Prx I knockout tumors than in wild-type controls. H2O2 stimulation caused more cellular apoptosis in Prx I knockdown HaCaT cells than in normal HaCaT cells. The signaling study revealed that Bcl-2, p-p38, and cleaved caspase-3 expressions were consistent with the results in the tumors. In conclusion, the deletion of Prx I triggered the DMBA/TPA-induced skin tumor formation in vivo and in vitro by regulating the reactive oxygen species (ROS)-p38 mitogen-activated protein kinase (MAPK) pathway. These findings provide a theoretical basis for treating skin cancer.


Subject(s)
Apoptosis/genetics , Keratinocytes/metabolism , Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Skin Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cell Line , HEK293 Cells , Humans , Hydrogen Peroxide/pharmacology , Keratinocytes/cytology , Keratinocytes/drug effects , Mice, 129 Strain , Mice, Knockout , Oxidants/pharmacology , Peroxiredoxins/deficiency , RNA Interference , Signal Transduction , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
19.
J Microbiol Biotechnol ; 30(3): 325-332, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-31893611

ABSTRACT

Methyl linderone (ML), a cyclo-pentenedione, was isolated from the fruit of Lindera erythrocarpa Makino (family Lauraceae). This plant has well-known anti-inflammatory effects; however, the anti-cancer effects of ML have not yet been reported. Thus, in the present study we investigated the effects of ML on the metastasis of human breast cancer cells. We used 12-O-tetradecanoyl phorbol-13-acetate (TPA)-stimulated MCF-7 cells as the cell model to study the effects of ML on invasion and migration. ML was found to reduce the invasion and migration rate of TPA-stimulated MCF-7 cells. Moreover, it inhibited two metastasis-related factors, matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8), at the mRNA and protein expression levels, in TPA-treated MCF-7 cells. The mechanism by which ML exerted these effects was through the inhibition of translocation of activator protein-1 (AP-1) and signal transducer and activator of transcription-3 (STAT3), mediated via phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, our findings indicated that ML attenuated the TPA-stimulated invasion and migration of MCF-7 cells by suppressing the phosphorylation of ERK and its downstream factors, AP-1 and STAT3. Therefore, ML is a potential agent for the treatment of breast cancer metastasis.


Subject(s)
Alkenes/pharmacology , Breast Neoplasms/metabolism , Cyclopentanes/pharmacology , Interleukin-8/metabolism , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 9/metabolism , Alkenes/chemistry , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement , Cyclopentanes/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Interleukin-8/genetics , MCF-7 Cells , Matrix Metalloproteinase 9/genetics , Phthalic Acids/pharmacology , STAT3 Transcription Factor/metabolism
20.
J Microbiol Biotechnol ; 30(1): 85-92, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31693828

ABSTRACT

One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-kappaB.


Subject(s)
Chemokine CCL5/biosynthesis , Docosahexaenoic Acids/pharmacology , Interleukin-6/biosynthesis , Monocytes/drug effects , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Down-Regulation , Humans , Inflammation , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Phosphorylation/drug effects , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...