Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(32): 12674-12682, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37531606

ABSTRACT

Although magnetic order is suppressed by a strong frustration, it appears in complex forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetically frustrated two-dimensional (2D) van der Waals material CrPSe3. Polycrystalline CrPSe3 was synthesized at an optimized temperature of 700 °C to avoid the formation of any secondary phases (e.g., Cr2Se3). The antiferromagnetic transition appeared at TN ≈ 127 K with a large Curie-Weiss temperature θCW ≈ -301 K via magnetic susceptibility measurements, indicating weak frustration in CrPSe3 with a frustration factor of f (|θCW|/TN) ≈ 2.4. Evidently, the formation of a long-range incommensurate antiferromagnetic order was revealed by neutron diffraction measurements at low temperatures (below 120 K). The monoclinic crystal structure of the C2/m symmetry is preserved over the studied temperature range down to 20 K, as confirmed by Raman spectroscopy measurements. Our findings on the incommensurate antiferromagnetic order in 2D magnetic materials, not previously observed in the MPX3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.

2.
ACS Nano ; 16(10): 17033-17040, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36173357

ABSTRACT

High pressure or strain is an effective strategy for generating phase transformations in van der Waals (vdW) layered materials without introducing defects, but this approach remains difficult to perform consistently. We present a scalable and facile method for achieving phase transformation in vdW materials, wherein solid vdW materials are subject to internal thermal stress within a molten metal mantle as it undergoes cooling. This internal thermal stress is principally the product of differential thermal expansion between mantle and core and can be tuned by the mantle material and temperature conditions. We validated this approach by achieving phase transformation of red phosphorus to black phosphorus, and metallic 1T'- to semiconducting 2H-MoTe2 crystals. We further demonstrate quantum electronic phase transformation of suppressed charge density wave in TiSe2 by means of electron-phonon coupling using the same system.

3.
Small ; 14(34): e1801599, 2018 08.
Article in English | MEDLINE | ID: mdl-30035854

ABSTRACT

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2 O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on-off resistance ratios reach 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology.

4.
Nano Lett ; 18(8): 4821-4830, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29949374

ABSTRACT

Layers of transition metal dichalcogenides (TMDs) combine the enhanced effects of correlations associated with the two-dimensional limit with electrostatic control over their phase transitions by means of an electric field. Several semiconducting TMDs, such as MoS2, develop superconductivity (SC) at their surface when doped with an electrostatic field, but the mechanism is still debated. It is often assumed that Cooper pairs reside only in the two electron pockets at the K/K' points of the Brillouin Zone. However, experimental and theoretical results suggest that a multivalley Fermi surface (FS) is associated with the SC state, involving six electron pockets at Q/Q'. Here, we perform low-temperature transport measurements in ion-gated MoS2 flakes. We show that a fully multivalley FS is associated with the SC onset. The Q/Q' valleys fill for doping ≳ 2 × 1013 cm-2, and the SC transition does not appear until the Fermi level crosses both spin-orbit split sub-bands Q 1 and Q 2. The SC state is associated with the FS connectivity and promoted by a Lifshitz transition due to the simultaneous population of multiple electron pockets. This FS topology will serve as a guideline in the quest for new superconductors.

5.
Nat Nanotechnol ; 13(7): 583-588, 2018 07.
Article in English | MEDLINE | ID: mdl-29784965

ABSTRACT

Optical harmonic generation occurs when high intensity light (>1010 W m-2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

6.
Nat Commun ; 8: 15763, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28643788

ABSTRACT

Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at THz frequencies. Fourier-transform infrared spectroscopy provides evidence of intraband-controlled absorption bleaching. These results pave the way to the integration of graphene-based SA with electrically pumped THz semiconductor micro-sources, with prospects for applications where excitation of specific transitions on short time scales is essential, such as time-of-flight tomography, coherent manipulation of quantum systems, time-resolved spectroscopy of gases, complex molecules and cold samples and ultra-high speed communications, providing unprecedented compactness and resolution.

7.
Nat Commun ; 8: 15093, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28530249

ABSTRACT

Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610-680 nm and 740-820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount.

8.
Nat Commun ; 7: 12978, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27667022

ABSTRACT

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

9.
ACS Nano ; 10(9): 8252-62, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27537529

ABSTRACT

We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642 nm. This is at least 2 orders of magnitude higher than bulk-semiconductor flexible membranes. The photoconductive gain is up to 4 × 10(5). The photocurrent is in the 0.1-100 µA range. The devices are semitransparent, with 8% absorptance at 642 nm, and are stable upon bending to a curvature of 1.4 cm. These capabilities and the low-voltage operation (<1 V) make them attractive for wearable applications.

10.
Nano Lett ; 16(6): 3442-7, 2016 06 08.
Article in English | MEDLINE | ID: mdl-26907096

ABSTRACT

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.

11.
ACS Nano ; 10(1): 1182-8, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26691058

ABSTRACT

Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime.

12.
ACS Nano ; 10(2): 1756-63, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26651030

ABSTRACT

We report the angular distribution of the G and 2D Raman scattering from graphene on glass by detecting back focal plane patterns. The G Raman emission can be described by a superposition of two incoherent orthogonal point dipoles oriented in the graphene plane. Due to double resonant Raman scattering, the 2D emission can be represented by the sum of either three incoherent dipoles oriented 120° with respect to each other, or two orthogonal incoherent ones with a 3:1 weight ratio. Parameter-free calculations of the G and 2D intensities are in excellent agreement with the experimental radiation patterns. We show that the 2D polarization ratio and the 2D/G intensity ratio depend on the numerical aperture of the microscope objective. This is due to the depolarization of the emission and excitation light when graphene is on a dielectric substrate, as well as to tight focusing. The polarization contrast decreases substantially for increasing collection angle, due to polarization mixing caused by the air-dielectric interface. This also influences the intensity ratio I(2D)/I(G), a crucial quantity for estimating the doping in graphene. Our results are thus important for the quantitative analysis of the Raman intensities in confocal microscopy. In addition, they are relevant for understanding the influence of signal enhancing plasmonic antenna structures, which typically modify the sample's radiation pattern.

13.
Nat Nanotechnol ; 10(8): 676-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26076467

ABSTRACT

Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

14.
ACS Nano ; 8(7): 7432-41, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24960180

ABSTRACT

We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.

15.
Sci Rep ; 4: 4630, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24717517

ABSTRACT

The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81 eV were used. The position and the line shape of the Raman 2D, G*, N, M, and other combination modes show dependence on the excitation energy as well as the stacking order and the thickness. One can unambiguously determine the stacking order and the thickness by comparing the 2D band spectra measured with 2 different excitation energies or by carefully comparing weaker combination Raman modes such as N, M, or LOLA modes. The criteria for unambiguous determination of the stacking order and the number of layers up to 5 layers are established.

16.
Sci Rep ; 3: 2309, 2013.
Article in English | MEDLINE | ID: mdl-23896759

ABSTRACT

The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.


Subject(s)
Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Aluminum Silicates/chemistry , Diffusion , Microscopy, Atomic Force , Silicon Dioxide/chemistry
17.
J Mater Chem B ; 1(9): 1229-1234, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-32260794

ABSTRACT

Water-dispersible graphitic hollow spheres were synthesized using a soft chemical route under hydrothermal conditions by glucose carbonization using a magnetite/silica-encapsulated core-shell sphere as a template. Carbonization on the templates happens as the magnetite core is partially or completely eliminated depending on the reaction conditions. Therefore, nano-sized graphitic hollow spheres or magnetite-core-encapsulated graphitic shells could be obtained. Also nitrogen-doped graphitic spheres were synthesized by a hydrothermal reaction. The graphitic and nitrogen-doped graphitic spheres show wavelength dependent photoluminescence in 300-600 nm range. The photoluminescence seems to depend on the fraction of the sp2 domains and N-doping, therefore, tunable PL emission can be achieved by controlling the nature of sp2 sites. In addition the cellular uptake of the graphitic hollow spheres was evaluated in human HeLa cells, demonstrating its main localization in the cytoplasm. A blue fluorescence signal was the most intensively observed in the cellular uptake process, although some green and red fluorescence was also observed. Since the cores of Fe3O4 could be completely or partly eliminated in a controllable way, it can be used as a magnetic resonance imaging agent. In addition, their easily modifiable hydrophilic surfaces for multi-functionality and hydrophobic voids covered by oxidized graphite make them promising candidates for applications in cellular photo-imaging and targeted drug delivery.

18.
Nanotechnology ; 23(43): 435603, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23059535

ABSTRACT

Today, state-of-the-art III-Ns technology has been focused on the growth of c-plane nitrides by metal-organic chemical vapor deposition (MOCVD) using a conventional two-step growth process. Here we show that the use of graphene as a coating layer allows the one-step growth of heteroepitaxial GaN films on sapphire in a MOCVD reactor, simplifying the GaN growth process. It is found that the graphene coating improves the wetting between GaN and sapphire, and, with as little as ~0.6 nm of graphene coating, the overgrown GaN layer on sapphire becomes continuous and flat. With increasing thickness of the graphene coating, the structural and optical properties of one-step grown GaN films gradually transition towards those of GaN films grown by a conventional two-step growth method. The InGaN/GaN multiple quantum well structure grown on a GaN/graphene/sapphire heterosystem shows a high internal quantum efficiency, allowing the use of one-step grown GaN films as 'pseudo-substrates' in optoelectronic devices. The introduction of graphene as a coating layer provides an atomic playground for metal adatoms and simplifies the III-Ns growth process, making it potentially very useful as a means to grow other heteroepitaxial films on arbitrary substrates with lattice and thermal mismatch.

19.
Nano Lett ; 12(9): 4444-8, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22866776

ABSTRACT

The Young's modulus of graphene is estimated by measuring the strain applied by a pressure difference across graphene membranes using Raman spectroscopy. The strain induced on pressurized graphene balloons can be estimated directly from the peak shift of the Raman G band. By comparing the measured strain with numerical simulation, we obtained the Young's modulus of graphene. The estimated Young's modulus values of single- and bilayer graphene are 2.4 ± 0.4 and 2.0 ± 0.5 TPa, respectively.


Subject(s)
Algorithms , Graphite/chemistry , Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Spectrum Analysis, Raman/methods , Elastic Modulus , Particle Size
20.
Nano Lett ; 11(8): 3227-31, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21728349

ABSTRACT

The thermal expansion coefficient (TEC) of single-layer graphene is estimated with temperature-dependent Raman spectroscopy in the temperature range between 200 and 400 K. It is found to be strongly dependent on temperature but remains negative in the whole temperature range with a room temperature value of (-8.0 ± 0.7) × 10(-6) K(-1). The strain caused by the TEC mismatch between graphene and the substrate plays a crucial role in determining the physical properties of graphene, and hence its effect must be accounted for in the interpretation of experimental data taken at cryogenic or elevated temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...