Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2400959, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940380

ABSTRACT

Synthesis of perovskites that exhibit pure-blue emission with high photoluminescence quantum yield (PLQY) in both nanocrystal solutions and nanocrystal-only films presents a significant challenge. In this work, a room-temperature method is developed to synthesize ultrasmall, monodispersed, Sn-doped methylammonium lead bromide (MAPb1- xSnxBr3) perovskite nanoplatelets (NPLs) in which the strong quantum confinement effect endows pure blue emission (460 nm) and a high quantum yield (87%). Post-treatment using n-hexylammonium bromide (HABr) repaired surface defects and thus substantially increased the stability and PLQY (80%) of the NPL films. Concurrently, high-precision patterned films (200-µm linewidth) are successfully fabricated by using cost-effective spray-coating technology. This research provides a novel perspective for the preparation of high PLQY, highly stable, and easily processable perovskite nanomaterials.

2.
Adv Mater ; 35(39): e2304533, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390092

ABSTRACT

The small nanoparticle size and long-chain ligands in colloidal metal halide perovskite quantum dots (PeQDs) cause charge confinement, which impedes exciton dissociation and carrier extraction in PeQD solar cells, so they have low short-circuit current density Jsc , which impedes further increases in their power conversion efficiency (PCE). Here, a re-assembling process (RP) is developed for perovskite nanocrystalline (PeNC) films made of colloidal perovskite nanocrystals to increase Jsc in PeNC solar cells. The RP of PeNC films increases their crystallite size and eliminates long-chain ligands, and thereby overcomes the charge confinement in PeNC films. These changes facilitate exciton dissociation and increase carrier extraction in PeNC solar cells. By use of this method, the gradient-bandgap PeNC solar cells achieve a Jsc = 19.30 mA cm-2 without compromising the photovoltage, and yield a high PCE of 16.46% with negligible hysteresis and good stability. This work provides a new strategy to process PeNC films and pave the way for high performance PeNC optoelectronic devices.

3.
Epigenetics Chromatin ; 16(1): 15, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37118845

ABSTRACT

Histone modifications are one of the many key mechanisms that regulate gene expression. Ash1 is a histone H3K36 methyltransferase and is involved in gene activation. Ash1 forms a large complex with Mrg15 and Caf1/p55/Nurf55/RbAp48 (AMC complex). The Ash1 subunit alone exhibits very low activity due to the autoinhibition, and the binding of Mrg15 releases the autoinhibition. Caf1 is a scaffolding protein commonly found in several chromatin modifying complexes and has two histone binding pockets: one for H3 and the other for H4. Caf1 has the ability to sense unmodified histone H3K4 residues using the H3 binding pocket. However, the role of Caf1 in the AMC complex has not been investigated. Here, we dissected the interaction among the AMC complex subunits, revealing that Caf1 uses the histone H4 binding pocket to interact with Ash1 near the histone binding module cluster. Furthermore, we showed that H3K4 methylation inhibits AMC HMTase activity via Caf1 sensing unmodified histone H3K4 to regulate the activity in an internucleosomal manner, suggesting that crosstalk between H3K4 and H3K36 methylation. Our work revealed a delicate mechanism by which the AMC histone H3K36 methyltransferase complex is regulated.


Subject(s)
Histones , Transcription Factors , Histones/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Methylation , Histone-Lysine N-Methyltransferase/metabolism , Histone Methyltransferases/metabolism , Chromatin Assembly Factor-1/metabolism
4.
Nature ; 611(7937): 688-694, 2022 11.
Article in English | MEDLINE | ID: mdl-36352223

ABSTRACT

Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.

5.
Elife ; 112022 04 21.
Article in English | MEDLINE | ID: mdl-35446253

ABSTRACT

Somatostatin is a peptide hormone that regulates endocrine systems by binding to G-protein-coupled somatostatin receptors. Somatostatin receptor 2 (SSTR2) is a human somatostatin receptor and is highly implicated in hormone disorders, cancers, and neurological diseases. Here, we report the high-resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) in complex with inhibitory G (Gi) proteins. Our structural and mutagenesis analyses show that seven transmembrane helices form a deep pocket for ligand binding and that SSTR2 recognizes the highly conserved Trp-Lys motif of SST-14 at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide a structural basis for the mechanism by which SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition mechanism of somatostatin receptors and a crucial resource to develop therapeutics targeting somatostatin receptors.


Subject(s)
Receptors, Somatostatin , Somatostatin , Cryoelectron Microscopy , Humans , Ligands , Receptors, Somatostatin/agonists , Receptors, Somatostatin/metabolism , Somatostatin/metabolism
6.
Structure ; 27(5): 846-852.e3, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30827841

ABSTRACT

Human ASH1L is the catalytic subunit of the conserved histone methyltransferase (HMTase) complex AMC that dimethylates lysine 36 in histone H3 (H3K36me2) to promote gene transcription in mammals and flies. Unlike AMC, ASH1L alone shows poor catalytic activity, because access to its substrate binding pocket is blocked by an autoinhibitory loop (AI loop) from the postSET domain. We report the crystal structure of the minimal catalytic active AMC complex containing ASH1L and its partner subunit MRG15. The structure reveals how binding of the MRG domain of MRG15 to a conserved FxLP motif in ASH1L results in the displacement of the AI loop to permit substrates to access the catalytic pocket of the ASH1L SET domain. Together, ASH1L activation by MRG15 therefore represents a delicate regulatory mechanism for how a cofactor activates an SET domain HMTase by releasing autoinhibition.


Subject(s)
DNA-Binding Proteins/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Transcription Factors/chemistry , Amino Acid Motifs , Animals , Crystallography, X-Ray , Histones/chemistry , Humans , Nucleosomes/chemistry , Protein Binding , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...