Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1365298, 2024.
Article in English | MEDLINE | ID: mdl-38736441

ABSTRACT

Cannabis sativa L. is an industrially valuable plant known for its cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), renowned for its therapeutic and psychoactive properties. Despite its significance, the cannabis industry has encountered difficulties in guaranteeing consistent product quality throughout the drying process. Hyperspectral imaging (HSI), combined with advanced machine learning technology, has been used to predict phytochemicals that presents a promising solution for maintaining cannabis quality control. We examined the dynamic changes in cannabinoid compositions under diverse drying conditions and developed a non-destructive method to appraise the quality of cannabis flowers using HSI and machine learning. Even when the relative weight and water content remained constant throughout the drying process, drying conditions significantly influenced the levels of CBD, THC, and their precursors. These results emphasize the importance of determining the exact drying endpoint. To develop HSI-based models for predicting cannabis quality indicators, including dryness, precursor conversion of CBD and THC, and CBD : THC ratio, we employed various spectral preprocessing methods and machine learning algorithms, including logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB). The LR model demonstrated the highest accuracy at 94.7-99.7% when used in conjunction with spectral pre-processing techniques such as multiplicative scatter correction (MSC) or Savitzky-Golay filter. We propose that the HSI-based model holds the potential to serve as a valuable tool for monitoring cannabinoid composition and determining optimal drying endpoint. This tool offers the means to achieve uniform cannabis quality and optimize the drying process in the industry.

2.
Front Plant Sci ; 13: 918170, 2022.
Article in English | MEDLINE | ID: mdl-35755700

ABSTRACT

Ultraviolet-B (UV-B, 280-315 nm) radiation has been known as an elicitor to enhance bioactive compound contents in plants. However, unpredictable yield is an obstacle to the application of UV-B radiation to controlled environments such as plant factories. A typical three-dimensional (3D) plant structure causes uneven UV-B exposure with leaf position and age-dependent sensitivity to UV-B radiation. The purpose of this study was to develop a model for predicting phenolic accumulation in kale (Brassica oleracea L. var. acephala) according to UV-B radiation interception and growth stage. The plants grown under a plant factory module were exposed to UV-B radiation from UV-B light-emitting diodes with a peak at 310 nm for 6 or 12 h at 23, 30, and 38 days after transplanting. The spatial distribution of UV-B radiation interception in the plants was quantified using ray-tracing simulation with a 3D-scanned plant model. Total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), UV-B absorbing pigment content (UAPC), and the antioxidant capacity were significantly higher in UV-B-exposed leaves. Daily UV-B energy absorbed by leaves and developmental age was used to develop stepwise multiple linear regression models for the TPC, TFC, TAC, and UAPC at each growth stage. The newly developed models accurately predicted the TPC, TFC, TAC, and UAPC in individual leaves with R 2 > 0.78 and normalized root mean squared errors of approximately 30% in test data, across the three growth stages. The UV-B energy yields for TPC, TFC, and TAC were the highest in the intermediate leaves, while those for UAPC were the highest in young leaves at the last stage. To the best of our knowledge, this study proposed the first statistical models for estimating UV-B-induced phenolic contents in plant structure. These results provided the fundamental data and models required for the optimization process. This approach can save the experimental time and cost required to optimize the control of UV-B radiation.

3.
Photosynth Res ; 151(1): 31-46, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34499317

ABSTRACT

Functional films have been used in greenhouses to improve the light environment for plant growth. Among them, a spectrum conversion film converting the green light of incident sunlight into red light has been reported to increase the crop productivity. However, the results are not always consistent, and the reasons for the improvement are not fully understood. The objectives of this study were to reveal the cumulative effects of a green-to-red spectrum conversion film (SCF) on the electron transport and photosynthetic performance of Fragaria × ananassa Duch. The photosynthetic efficiency, leaf optical properties, chlorophyll content, chlorophyll fluorescence, growth, and fruit qualities when the plant was grown under a transparent polyethylene film (PE) and SCF were evaluated. The sunlight modified by SCF did not change the leaf optical properties and chlorophyll content but significantly increased the chlorophyll fluorescence parameters related to reduction end electron acceptors at PSI acceptor side and the efficiency of electron transport. Without an increase in nonphotochemical quenching, the effective quantum yields of PSII and PSI of leaves grown under SCF were significantly higher than those parameters when grown under PE. Forty eight days after transplanting, the photosynthetic efficiency and photosynthetic rates of leaves and whole plants increased significantly under SCF compared to PE. The vegetative growth was not affected by SCF, but the fruit weight, sweetness, acidity, and firmness under SCF were significantly improved. These results indicated that sunlight modified by SCF stimulates electron flow and improves photosynthetic capacity and fruit quality of Fragaria × ananassa Duch.


Subject(s)
Fragaria , Chlorophyll , Electron Transport , Photosynthesis , Plant Leaves , Sunlight
4.
Front Plant Sci ; 12: 667456, 2021.
Article in English | MEDLINE | ID: mdl-34305968

ABSTRACT

UV-B (280-315 nm) radiation has been used as an effective tool to improve bioactive compound contents in controlled environments, such as plant factories. However, plant structure changes with growth progress induce different positional distributions of UV-B radiation interception, which cause difficulty in accurately evaluating the effects of UV-B on biosynthesis of bioactive compounds. The objective of this study was to quantitatively analyze the positional distributions of UV-B radiation interception and bioactive compound contents of kales (Brassica oleracea L. var. acephala) with growth progress and their relationships. Short-term moderate UV-B levels did not affect the plant growth and photosynthetic parameters. Spatial UV-B radiation interception was analyzed quantitatively by using 3D-scanned plant models and ray-tracing simulations. As growth progressed, the differences in absorbed UV-B energy between leaf positions were more pronounced. The concentrations of total phenolic compound (TPC) and total flavonoid compound (TFC) were higher with more cumulative absorbed UV-B energy. The cumulative UV energy yields for TFC were highest for the upper leaves of the older plants, while those for TPC were highest in the middle leaves of the younger plants. Despite the same UV-B levels, the UV-B radiation interception and UV-B susceptibility in the plants varied with leaf position and growth stage, which induced the different biosynthesis of TFC and TPC. This attempt to quantify the relationship between UV-B radiation interception and bioactive compound contents will contribute to the estimation and production of bioactive compounds in plant factories.

5.
Int J Mol Sci ; 22(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800078

ABSTRACT

Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.


Subject(s)
Brassica/metabolism , Brassica/radiation effects , Phenols/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Brassica/anatomy & histology , Chlorophyll/chemistry , Chlorophyll/metabolism , Flavonoids/metabolism , Models, Biological , Photosynthesis/radiation effects , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects , Ultraviolet Rays
6.
Plants (Basel) ; 9(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349252

ABSTRACT

Although plant responses to artificial lighting spectra often produce abnormal morphogenesis and reduced productivity, no quantification method to determine how plants perceive and respond to light has been available. Our objective in this study was to test whether a plant's spectral perception can be quantified using the light absorption of its major photoreceptors, phytochrome, cryptochrome, and phototropin. We developed an artificial solar lamp and three different light sources, based on a high-pressure sodium lamp, a fluorescent lamp, and red and blue light-emitting diodes, whose absorption by photoreceptors was equal to that of the standard solar spectrum. Cucumber plants grown under the artificial solar and developed light sources showed normal photomorphogenesis and were indistinguishable from each other. Plants grown under unmodified commercial light sources had abnormal photomorphogenesis that made them short and small. The photosynthetic rate was higher under the unmodified light sources; however, dry masses were highest under the artificial solar and modified light sources, indicating that the cucumber plants are optimized to the solar spectrum. Our results clearly demonstrate that the spectral perceptions of plants can be quantified using the light absorption of their photoreceptors, not visual color or spectra. We expect that our findings will contribute to a better understanding of plant perceptions of and responses to light quality, and improve the productivity of plants cultivated under artificial light.

7.
Plants (Basel) ; 9(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121512

ABSTRACT

Among abiotic stresses, both drought and UV-B radiation effectively trigger the accumulation of secondary metabolites, and can be widely applied in plant factories. The objectives of this study were to investigate antioxidant accumulation under drought stress alone, or in combination with UV-B radiation near harvest, and to determine an optimal treatment time for maximum antioxidant production. Kale (Brassica oleracea L. var. acephala) plants were grown in a plant factory and harvested at 42 days after transplanting. The single and combination treatments lasted for 7 to 1 days and 4 to 2 days before harvest, respectively. The results of both Fv/Fm (maximal photochemical efficiency in photosystem II) and leaf water potential could ensure the function of photosynthesis and maintain normal leaf moisture in single drought treatments of less than 4 days. The total phenolic and flavonoid contents and antioxidant activities were significantly increased in both single and combination treatments for 3 to 4 days, compared to other treatments. The supplementary UV-B treatments showed no extra formation of antioxidants compared to the single drought treatments. As a result, drought for 3 days before harvest could achieve the highest potential value of kale as a source of natural antioxidants.

8.
Photochem Photobiol ; 96(4): 845-852, 2020 07.
Article in English | MEDLINE | ID: mdl-32104924

ABSTRACT

UV-B irradiation has been used to enhance the secondary metabolite content in plants, but its spatial effect on plants has not been considered. The objective of this study was to compare spatial photosynthetic traits and bioactive compound accumulation in kale (Brassica oleracea L. var Acephala) according to the distribution and length of UV-B exposure near harvest. Plants were exposed to UV-B of 0-3, 3-6 and 6-9 W m-2 for 4 h per day at 5 days (Exp. 1) and 4.2 W m-2 at 5, 4, 3, 2 or 1 days (Exp. 2) before harvest. In spatial distribution, the higher the UV-B intensity, the lower the mean Fv /Fm (maximal photochemical efficiency of PSII) and the higher the concentration of total flavonoid compound (TFC). With UV-B stress, Fv /Fm and fluorescence transient parameters decreased except for DI0 /CS (dissipated energy flux per cross section) and PIabs (performance index of PSII). When exposed to UV-B radiation for 2 days before harvest, the total phenolic compounds and TFC per plant were highest, not always proportional to the local Fv /Fm but affected by dry weight. Short-term UV-B stress near harvest would be more efficient for the accumulation of bioactive compounds by minimizing the loss of plant weight.


Subject(s)
Brassica/radiation effects , Chlorophyll/metabolism , Ultraviolet Rays , Brassica/metabolism , Dark Adaptation , Flavonoids/metabolism , Fluorescence , Phenols/metabolism , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...