Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472574

ABSTRACT

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Subject(s)
Bentonite , Cesium , Clay , Cesium/chemistry , Adsorption , Sodium Chloride , Minerals/chemistry , Cations, Monovalent , Aluminum Silicates/chemistry
2.
Chemosphere ; 352: 141462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364923

ABSTRACT

The migration and retention of radioactive contaminants such as 137Cesium (137Cs) in various environmental media pose significant long-term storage challenges for nuclear waste. The distribution coefficient (Kd) is a critical parameter for assessing the mobility of radioactive contaminants and is influenced by various environmental conditions. This study presents machine-learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict the Kd values for Cs in solid phase groups. We used three different machine learning models: random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN). The models were trained on 14 input variables from the JAEA-SDB, including factors such as the Cs concentration, solid-phase properties, and solution conditions, which were preprocessed by normalization and log-transformation. The performances of the models were evaluated using the coefficient of determination (R2) and root mean squared error (RMSE). The RF, ANN, and CNN models achieved R2 values greater than 0.97, 0.86, and 0.88, respectively. We also analyzed the variable importance of RF using an out-of-bag (OOB) and a CNN with an attention module. Our results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. Our models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and long-term risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.


Subject(s)
Cesium , Radioactive Waste , Cesium/analysis , Cesium Radioisotopes/analysis , Radioactive Waste/analysis , Japan
3.
J Hazard Mater ; 452: 131360, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37031671

ABSTRACT

The desorption of cesium (Cs) from contaminated clay minerals remains challenging because of the restricted efficiency of the removal process. Therefore, in the present study, a bead-type adsorbent was added during the conventional acid washing process to improve the removal of Cs+ from a clay mineral. As the Cs+ adsorbent, polyacrylonitrile-based nickel potassium hexacyanoferrate (NiFC-PAN) was used to selectively adsorb Cs+ in a strongly acidic solution containing competing ions. To prevent erosion of the adsorbent under harsh environmental conditions and to facilitate the separation of clay particles, PAN was deliberately constructed as large beads. The synthesized adsorbent (NiFC/PAN in a 2:1 ratio) showed high selectivity for Cs+, with a maximum capacity for Cs+ adsorption of 162.78 mg/g in 0.5 M HNO3 solution. Because the NiFC-PAN demonstrated greater Cs+ selectivity than the clay mineral (hydrobiotite, HBT), the addition of NiFC-PAN during the acid washing significantly increased Cs+ desorption (73.3%) by inhibiting the re-adsorption of Cs+ on the HBT. The radioactivity of 137Cs-HBT was substantially decreased from 209 to 27 Bq/g by the acid treatment in the presence of NiFC-PAN, corresponding to a desorption efficiency of 87.1%. Therefore, these results suggest that the proposed technique is a potentially useful and effective method for decontamination of radioactive clay.

4.
Environ Res ; 214(Pt 4): 114072, 2022 11.
Article in English | MEDLINE | ID: mdl-35987372

ABSTRACT

Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Adsorption , Cesium/chemistry , Charcoal , Food , Humans , Kinetics , Spectroscopy, Fourier Transform Infrared , Strontium , Water , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 295: 133874, 2022 May.
Article in English | MEDLINE | ID: mdl-35131267

ABSTRACT

We have modified the ion-exchange affinity of nano-Hydroxyapatite (Ca5(PO4)3OH, HAP) surface for the rapid and selective adsorption of 90Sr from groundwater. The modification was achieved by the post-substitution of cations (Na+, Mg2+, Cu2+, Ba2+, Fe3+, and Al3+) for parent Ca2+ within surface structure of HAP. The diffraction patterns of modified HAP showed a slight shift of the (002) peak between 25° and 27° 2θ depending the ionic radius of the substituted cation. Magnesium substituted HAP, Mg-HAP, exhibited the highest removal efficiency (>95%) for 10 ppm of Sr2+, which is attributable to the higher ion-exchange affinity of substituted Mg2+ than parent Ca2+ toward Sr2+. The results of various analyses revealed that Mg substitution dominantly occurred at the CaI site of HAP, which enabled the Mg-HAP to adsorb Sr2+ at both of CaI and CaII sites whereas bare HAP could adsorb Sr2+ mainly at CaII site. Adsorption isotherms and the kinetics of Mg-HAP for Sr2+ were evaluated using a bi-Langmuir isotherm and a pseudo-second-order kinetic model, which demonstrated the Mg-HAP exhibited the highest adsorption capacity (64.69 mg/g) and fastest adsorption kinetics (0.161-1.714 g/(mg·min)) than previously modified HAPs. In the presence of competing cations at circumneutral pHs, the enhanced performance of the Mg-HAP led to a greater than 97% reduction of 90Sr (initial radioactivity = 9500 Bq/L) within 1 h. The distribution coefficient of Mg-HAP was 1.3-6.6 × 103 mL/g while that of bare HAP was 1.2-6.6 × 102 mL/g. The findings in the present study highlight that the ion-exchange affinity of CaI and CaII sites on HAP surface plays a key-role in 90Sr uptake. The proposed modification method can simply increase the affinity of HAP surface, therefore, this work can further improve the deployment of an in situ remediation technology for 90Sr contaminated groundwater, i.e., Mg-HAP-based permeable reactive barrier.


Subject(s)
Groundwater , Radioactivity , Adsorption , Durapatite/chemistry , Magnesium , Strontium Radioisotopes
6.
Environ Sci Pollut Res Int ; 28(48): 67990-68005, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651269

ABSTRACT

A huge amount of radioactive soil has been generated through decommissioning of nuclear facilities around the world. This review focuses on the difficulties and complexities associated with the remediation of radioactive soils at the site level; therefore, laboratory studies were excluded from this review. The problems faced while remediating radioactive soils using techniques based on strategies such as dry separation, soil washing, flotation separation, thermal desorption, electrokinetic remediation, and phytoremediation are discussed, along with appropriate examples. Various factors such as soil type, particle size, the fraction of fine particles, and radionuclide characteristics that strongly influence radioactive soil decontamination processes are highlighted. In this review, we also survey and compare the pool of available technologies currently being used for the remediation of radionuclide-contaminated soils, as well as the economic aspects of soil remediation using different techniques. This review demonstrates the importance of the integrated role of various factors in determining the effectiveness of the radioactive soil decontamination process.


Subject(s)
Environmental Restoration and Remediation , Radioactivity , Soil Pollutants, Radioactive , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Soil Pollutants, Radioactive/analysis
7.
ACS Omega ; 6(28): 17923-17930, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308027

ABSTRACT

Extracting cesium (Cs) from nonexpandable illite clay is important in the remediation of radioactive Cs-contaminated soil. In this study, we investigated a chloride salt treatment technique for the removal of Cs from illite. Cs-loaded illite samples with initial Cs concentrations of 2430 and 690 ppm were treated using a NaCl-MgCl2-CaCl2 ternary salt system at 400-850 °C under ambient pressure to suppress Cs loss by vaporization. As a result of the treatment at 850 °C, wherein the salt was in a molten state, the Cs concentration was reduced by 99.5% (to 11.6 ppm) in the first sample and by 99.4% (to 3.86 ppm) in the second sample. Cs removal was achieved for these two samples even in a solid-state reaction at 400 °C, with reductions of 83.3% (407 ppm) and 73.3% (184 ppm), respectively. CsCl was formed by the reaction and remained stable in the salt. The incorporation of cations from the salt (mainly Mg2+) to illite induced structural evolution forming an indialite phase to expel Cs from the clay samples.

8.
J Environ Radioact ; 233: 106592, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33774591

ABSTRACT

The effect of clay mineral composition on Cs adsorption behavior of silt and clay fractions (SC-fractions) of soil was investigated. Surface soil samples were collected within 2 km of Kori and Wolsong nuclear power plants in South Korea, and SC-fractions (<20 µm) were separated. The physicochemical properties of SC-fractions and types of clay minerals contained in the SC-fractions were analyzed. The cesium adsorption capacity of the SC-fractions, and affinity between the SC-fractions and Cs, were investigated by isothermal adsorption analysis using the dual-site Langmuir adsorption model. To understand selective adsorption of Cs, the radiocesium interception potential and distribution coefficient of the SC-fractions were analyzed in the presence or absence of competing ions. The radiocesium distribution coefficient of the SC-fractions showed a trend similar to that of the Langmuir sorption coefficient of high-affinity binding sites for Cs in the SC-fractions. The SC-fractions of Kori soils that contain only non-expandable clay minerals including highly weathered mica had low Cs adsorption capacity. However, the SC-fractions of Kori soils showed higher Cs adsorption selectivity compared to the SC-fractions of Wolsong soils containing expandable clay minerals and micaceous mineral with a low degree of weathering. It is predicted that the highly weathered micas have high affinity to Cs, and such clay minerals contribute the most to the adsorption process in dilute solutions.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Adsorption , Aluminum Silicates/analysis , Cesium/analysis , Cesium Radioisotopes/analysis , Clay , Minerals , Republic of Korea , Soil , Soil Pollutants, Radioactive/analysis
9.
RSC Adv ; 11(3): 1841-1849, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424110

ABSTRACT

The stabilization of decontamination foams containing a chemical reagent is a crucial requirement for their use in the decontamination of nuclear power plants. We have investigated the effects on decontamination foam stability of adding silica nanoparticles (NPs) modified with various functional groups, namely propyl (-CH3), amine (-NH2), and thiol (-SH) groups. The surface properties of these silica NPs were characterized with ATR-FTIR, solid NMR, and TGA analyses. We also established that the agglomeration in such foams of the amine-modified silica NPs is weaker than that of the other modified silica NPs due to their thorough dispersion in the liquid film. Further, the foam containing amine-modified silica NPs was found to be stable for 60 min at a pH of 2, i.e. under decontamination conditions. The bubble structure analysis showed that this decontamination foam has a bubble count that is approximately 5-8 times higher than the foams containing NPs modified with the other functional groups, which indicates that the decontamination foam with amine-modified silica NPs has the best foam structure of the three investigated foams. The well-dispersed and smaller amine-modified silica NPs enhance the foam stability by providing a barrier between the gas bubbles and delaying their coalescence. In contrast, the thiol- and propyl-modified silica NPs form aggregates with large diameters that reduce the maximum capillary pressure of coalescence and hence decrease the foam stability.

10.
Environ Sci Pollut Res Int ; 27(28): 35580-35590, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32594435

ABSTRACT

The desorption of radioactive cesium (Cs) in soil is influenced by the clay mineral type, adsorption site, and concentration of Cs. In this study, experiments to detect desorption of non-radioactive and radioactive Cs from illite using oxalic acid were performed for 2 days at 70 °C in hydrothermal conditions. The results showed that the 133Cs removal efficiency by oxalic acid and inorganic acid treatment was similar at high concentration (22.86 mmol/kg) of non-radioactive 133Cs. In the radioactive 137Cs experiment, the removal efficiency by oxalic acid was higher than that by inorganic acid at low concentration (0.79 × 10-6 mmol/kg) of radioactive 137Cs. Based on the illite hypothetical frayed edge site (FES) concentration of 0.612 mmol/kg, the results suggested that 137Cs was preferentially adsorbed to FES on illite. The 137Cs at low concentration was difficult to remove because it was irreversible adsorption to FES, while the non-radioactive Cs at high concentration was mainly adsorbed to planar sites, and so was easy to desorb by ion exchange. Based on the results of NMR, FTIR, and XPS analyses, we concluded that the higher efficiency of 137Cs removal at low concentration by oxalic acid treatment than by treatment with inorganic acid was because of chelation effects associated with the complexation of oxalic acid (ligands) and metal ions in irreversible site (FES).


Subject(s)
Oxalic Acid , Water Pollutants, Radioactive/analysis , Adsorption , Cesium , Minerals
11.
RSC Adv ; 10(37): 21822-21829, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-35516636

ABSTRACT

The separation of Cs-enriched fine particles is a highly effective way to reduce the volume and radioactivity of contaminated soil. This work demonstrated the application of polyethylenimine (PEI)-coated Fe3O4 nanocomposites and a mesh filter for the selective separation of clay particles from Cs-contaminated soil. The PEI coating on the Fe3O4 nanoparticles enhanced the binding force between the magnetic nanoparticles and clay minerals via electrostatic attraction; thus, approximately 100% of the clay particles were magnetically separated from solution by Fe3O4-PEI nanocomposites at a low dose (0.04 g-nanocomposite per g-clay). In separation experiments with soil mixtures, clay- and silt-sized fine particles that had been magnetized by Fe3O4-PEI nanocomposites were selectively separated, and the separation efficiency improved when a mesh filter was added to exclude physically large particles. The combination of magnetic and sieving separation thoroughly separated fine particles from soil by reducing the volume of the magnetic fraction. We also evaluated the magnetic-sieving separation method for the selective removal of clay particles from 137Cs-contaminated soil. The decrease in radioactivity in the treated nonmagnetic fraction, which accounted for 87.5% of the total soil, corresponded to a high decontamination efficiency of approximately 90%. The developed separation technology offers great potential for the efficient remediation of radioactive soil.

12.
J Hazard Mater ; 390: 121381, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31607579

ABSTRACT

In this study, hydrogen peroxide (H2O2) was used to enhance the cation-exchange treatment for Cs+ desorption from clay minerals. Among various investigated clay minerals, hydrobiotite (HBT), which has interstratified layers of vermiculite and biotite, exhibited the highest Cs+ sorption capacity and the most favorable H2O2 activation because of its high Fe content. In X-ray diffraction analysis, HBT treated with H2O2 and 0.1 M Mg2+ showed substantial changes in its basal spacing, indicating expansion of the interlayer region induced by treatment of H2O2 and strongly hydrated divalent cations. In addition, more than 80% of the Cs+ was readily desorbed from HBT with 35% H2O2 solution and 0.1 M Mg2+ at room temperature. After three cycles under the same treatment conditions (35% H2O2 solution and 0.1 M Mg2+), approximately 99% removal of radioactive Cs+ was achieved. These results suggested that H2O2 treatment with solvated Mg2+ enhanced Cs+ desorption from HBT by altering the interlayer region through intercalation of hydrated divalent cations in conjunction with the H2O2 decomposition reaction.

13.
Sci Total Environ ; 706: 136020, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31841848

ABSTRACT

We evaluated the feasibility of using magnetic nanoparticles (MNPs) coated with polyethylenimine (PEI), a cationic polymer, to remediate radioactive contaminated soil by separating Cs-contaminated clay from the soil. The influences of the solution pH, PEI-to-MNPs mass ratio, and the PEI-MNPs dose on the magnetic separation performance were systematically examined. The highest SE% of illite from solution through electrostatic attraction was approximately 100% at a mass ratio of 0.04 g-PEI-MNPs/g-clay. The PEI coating clearly enhanced the adhesion between MNPs and clay minerals by increasing the quantity of functional amine groups available for adsorbing negatively charged clay minerals. In separation experiments using a soil mixture, the PEI-coated MNPs selectively separated clay- and silt-sized fine particles smaller than 0.038 mm even in the presence of a large amount of sand when used at a low dose (mass ratio of 0.05 g-PEI-MNPs/g-clay) and without pH control. We also used the PEI-MNPs to separate 137Cs-contaminated illite from soil under an external magnetic field. After magnetic separation, the highest removal efficiency achieved for 137Cs removal from the treated soil was 81.7% at a low nanoparticle dosage, which resulted in satisfying the reduction of radioactivity and waste volume. The results clearly demonstrate that the selective separation of Cs-contaminated clay using PEI-coated MNPs is a promising technique for remediating radioactive soil.

14.
Sci Rep ; 9(1): 10149, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300718

ABSTRACT

We evaluated the potential sequestration of cesium (Cs+) by microalgae under heterotrophic growth conditions in an attempt to ultimately develop a system for treatment of radioactive wastewater. Thus, we examined the effects of initial Cs+ concentration (100-500 µM), pH (5-9), K+ and Na+ concentrations (0-20 mg/L), and different organic carbon sources (acetate, glycerol, glucose) on Cs+ removal. Our initial comparison of nine microalgae indicated that Desmodesmus armatus SCK had removed the most Cs+ under various environmental conditions. Addition of organic substrates significantly enhanced Cs+ uptake by D. armatus, even in the presence of a competitive cation (K+). We also applied magnetic nanoparticles coated with a cationic polymer (polyethylenimine) to separate 137Cs-containing microalgal biomass under a magnetic field. Our technique of combining bioaccumulation and magnetic separation successfully removed more than 90% of the radioactive 137Cs from an aqueous medium. These results clearly demonstrate that the method described here is a promising bioremediation technique for treatment of radioactive liquid waste.


Subject(s)
Cesium Radioisotopes/isolation & purification , Microalgae/metabolism , Water Pollutants, Radioactive/isolation & purification , Bioaccumulation , Carbon/metabolism , Cesium/isolation & purification , Cesium/pharmacokinetics , Cesium Radioisotopes/pharmacokinetics , Chlorophyta/drug effects , Chlorophyta/metabolism , Hydrogen-Ion Concentration , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Microalgae/drug effects , Polyethyleneimine/chemistry , Potassium/pharmacology , Sodium/pharmacology , Species Specificity , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Radioactive/pharmacokinetics
15.
Environ Geochem Health ; 41(1): 469-480, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29574658

ABSTRACT

Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.


Subject(s)
Colloids/chemistry , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Environmental Monitoring , Hydrogen-Ion Concentration , Osmolar Concentration , Porosity , Republic of Korea , Sodium Chloride
16.
Chemosphere ; 191: 729-737, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29080535

ABSTRACT

ArsH encodes an oxidoreductase, an NAD(P)H-dependent mononucleotide reductase, with an unknown function, frequently within an ars operon, and is widely distributed in bacteria. Novel arsenite-oxidizing bacteria have been isolated from arsenic-contaminated groundwater and surface soil in Vietnam. We found that ArsH gene activity, with arsenite oxidase in the periplasm; it revealed arsenic oxidation potential of the arsH system. Batch experiment results revealed Citrobacter freundii strain VTan4 (DQ481466) and Pseudomonas putida strain VTw33 (DQ481482) completely oxidized 1 mM of arsenite to arsenate within 30-50 h. High concentrations of arsenic were detected in groundwater and surrounding soil obtained from Vinh Tru village in Ha Nam province (groundwater: 11.0 µg/L to 37.0 µg/L; and soil: 2.5 mg/kg, 390.1 mg/kg), respectively. An arsH gene encoding an organoarsenical oxidase protein was observed in arsenite-oxidizing Citrobacter freundii strain VTan4 (DQ481466), whereas arsB, arsH, and arsH were detected in Pseudomonas putida strain VTw33 (DQ481482). arsH gene in bacteria was first reported from Vietnam for resistance and arsenite oxidase. We proposed that residues, Ser 43, Arg 45, Ser 48, and Tyr 49 are required for arsenic binding and activation of arsH. The ars-mediated biotransformation strongly influenced potential arsenite oxidase enzyme of the operon encoding a homogeneous arsH. Results suggest that the further study of arsenite-oxidizing bacteria may lead to a better understanding of arsenite oxidase responses, such as those of arsH, that may be applied to control biochemical properties; for example, speciation, detoxification, bioremediation, biotransformation, and mobilization of arsenic in contaminated groundwater.


Subject(s)
Arsenic/metabolism , Biotransformation , Groundwater/microbiology , Water Pollutants, Chemical/metabolism , Arsenates , Arsenic/analysis , Arsenic Trioxide , Arsenicals , Arsenites , Biodegradation, Environmental , Groundwater/chemistry , Operon , Oxidation-Reduction , Oxides , Oxidoreductases/metabolism , Pseudomonas putida/metabolism , Vietnam , Water Pollutants, Chemical/analysis
17.
Chemosphere ; 145: 409-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26692518

ABSTRACT

In this study, we investigated phenol degradation via zero-valent iron (ZVI)-assisted Fenton reaction through kinetic and spectroscopic analysis. In batch experiments, 100 mg/L of phenol was completely degraded, and 75% of TOC was removed within 3 min under an optimal hydrogen peroxide (H2O2) concentration (50 mM) via the Fenton reaction. In the absence of H2O2, oxygen (O2) was dissolved into the solution and produced H2O2, which resulted in phenol degradation. However, phenol removal efficiency was not very high compared to external H2O2 input. The Fenton reaction rapidly occurred at the surface of ZVI, and then phenol mobility from the solution to the ZVI surface was the rate determining step of the whole reaction. The pseudo-second order adsorption kinetic model well describes phenol removal, and its rate increased according to the H2O2 concentration. X-ray absorption spectroscopic analysis revealed that iron oxide (Fe-O bonding) was formed on ZVI with [H2O2] > 50 mM. A high concentration of H2O2 led to rapid degradation of phenol and caused corrosion on the ZVI surface, indicating that Fe(2+) ions were rapidly oxidized to Fe(3+) ions due to the Fenton reaction and that Fe(3+) was precipitated as iron oxide on the ZVI surface. However, ZVI did not show corroded characteristics in the absence of H2O2 due to the insufficient ZVI-assisted Fenton reaction and oxidation of Fe(2+) to Fe(3+).


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Microscopy, Electron, Scanning , Waste Disposal, Fluid , X-Ray Absorption Spectroscopy , X-Ray Diffraction
18.
Environ Sci Pollut Res Int ; 23(2): 1081-90, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25943509

ABSTRACT

In this study, batch experiments were conducted to investigate the effect of the concentration of ferrous [Fe(II)] ions on selenate [Se(VI)] removal using zero-valent iron (ZVI). The mechanism of removal was investigated using spectroscopic and image analyses of the ZVI-Fe(II)-Se(VI) system. The test to remove 50 mg/L of Se(VI) by 1 g/L of ZVI resulted in about 60% removal of Se(VI) in the case with absence of Fe(II), but other tests with the addition of 50 and 100 mg/L of the Fe(II) had increased the removal efficiencies about 93 and 100% of the Se(VI), respectively. In other batch tests with the absence of ZVI, there were little changes on the Se(VI) removal by the varied concentration of the Fe(II). From these results, we found that Fe(II) ion plays an accelerator for the reduction of Se(VI) by ZVI with the stoichiometric balance of 1.4 (=nFe(2+)/nSe(6+)). Under anoxic conditions, the batch test revealed about 10% removal of the Se(VI), indicating that the presence of dissolved oxygen increased the kinetics of Se(VI) removal due to the Fe(II)-containing oxides on the ZVI, as analyzed by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). The X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectra also showed that the reductive process of Se(VI) to Se(0)/Se(-II) occurred in the presence of the both ZVI and Fe(II). The final product of iron corrosion was lepidocrocite (γ-FeOOH), which acts as an electron transfer barrier from Fe(0) core to Se(VI). Therefore, the addition of Fe(II) enhanced the reactivity of ZVI through the formation of iron oxides (magnetite) favoring electron transfer during the removal of Se(VI), which was through the exhaustion of the Fe(0) core reacted with Se(VI).


Subject(s)
Ferrous Compounds/chemistry , Iron/chemistry , Selenic Acid/chemistry , Adsorption , Ferrosoferric Oxide/chemistry , Photoelectron Spectroscopy , X-Ray Absorption Spectroscopy
19.
J Hazard Mater ; 219-220: 240-6, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22525481

ABSTRACT

The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900°C for 2h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO(2)) and pollucite (Cs(2)OAl(2)O(3)4SiO(2)), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process.


Subject(s)
Membranes, Artificial , Metals, Heavy/chemistry , Nuclear Power Plants , Radioisotopes/chemistry , Volatilization , Metals, Heavy/isolation & purification , Radioisotopes/isolation & purification , X-Ray Diffraction
20.
J Hazard Mater ; 186(1): 855-62, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21163574

ABSTRACT

The effects of pH and dissolved oxygen (DO) on aqueous Cr(VI) removal by micro-scale zero-valent iron (Fe(0)/H(2)O system) were investigated. Batch experiments were conducted at pH 4.0, 5.0 and 6.0 under oxic and anoxic conditions. Column experiments were performed at pH 5.0 and 7.5 under oxic condition. Spectroscopic analyses were applied to explain the mechanism of Cr(VI) removal using X-ray absorption near-edge structure (XANES), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Results showed that the kinetics of Cr(VI) removal were fastest at pH 5 under both oxic and anoxic conditions. As a rule, Cr(VI) removal were faster under oxic conditions than under anoxic conditions. Column experiments showed that Cr(VI) removal was about 1.7-fold higher at pH 5 than at pH 7.5. XANES (X-ray absorption near edge structures) results showed that Fe(0) reduced Cr(VI) to Cr(III) under both oxic and anoxic conditions. X-ray diffraction patterns of the Cr(VI)-Fe(0) reaction products suggested partial formation of chromite (FeCr(2)O(4)) at pH 5 and 6 under oxic conditions. However, nano-sized clusters of Cr(III)/Fe(III) hydroxide/oxyhydroxide were formed on the surface of Fe(0) under anoxic conditions. These results indicate that the presence of oxygen in solution plays an important role in control of the kinetic of Cr(VI) removal and in development of various Cr(VI) reduction products.


Subject(s)
Chromium/isolation & purification , Hydrogen-Ion Concentration , Iron/chemistry , Oxygen/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...