Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 16862, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033344

ABSTRACT

The prevalence of a novel ß-coronavirus (SARS-CoV-2) was declared as a public health emergency of international concern on 30 January 2020 and a global pandemic on 11 March 2020 by WHO. The spike glycoprotein of SARS-CoV-2 is regarded as a key target for the development of vaccines and therapeutic antibodies. In order to develop anti-viral therapeutics for SARS-CoV-2, it is crucial to find amino acid pairs that strongly attract each other at the interface of the spike glycoprotein and the human angiotensin-converting enzyme 2 (hACE2) complex. In order to find hot spot residues, the strongly attracting amino acid pairs at the protein-protein interaction (PPI) interface, we introduce a reliable inter-residue interaction energy calculation method, FMO-DFTB3/D/PCM/3D-SPIEs. In addition to the SARS-CoV-2 spike glycoprotein/hACE2 complex, the hot spot residues of SARS-CoV-1 spike glycoprotein/hACE2 complex, SARS-CoV-1 spike glycoprotein/antibody complex, and HCoV-NL63 spike glycoprotein/hACE2 complex were obtained using the same FMO method. Following this, a 3D-SPIEs-based interaction map was constructed with hot spot residues for the hACE2/SARS-CoV-1 spike glycoprotein, hACE2/HCoV-NL63 spike glycoprotein, and hACE2/SARS-CoV-2 spike glycoprotein complexes. Finally, the three 3D-SPIEs-based interaction maps were combined and analyzed to find the consensus hot spots among the three complexes. As a result of the analysis, two hot spots were identified between hACE2 and the three spike proteins. In particular, E37, K353, G354, and D355 of the hACE2 receptor strongly interact with the spike proteins of coronaviruses. The 3D-SPIEs-based map would provide valuable information to develop anti-viral therapeutics that inhibit PPIs between the spike protein of SARS-CoV-2 and hACE2.


Subject(s)
Betacoronavirus/metabolism , Computational Biology/methods , Coronavirus Infections/epidemiology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Protein Interaction Maps , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Antibodies, Viral/metabolism , Binding Sites , COVID-19 , Coronavirus Infections/virology , Coronavirus NL63, Human/metabolism , Humans , Pandemics , Pneumonia, Viral/virology , Prevalence , Protein Domains , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology
2.
Sci Rep ; 9(1): 16727, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723178

ABSTRACT

Inhibitors to interfere protein-protein interactions (PPI) between programmed cell death 1 (PD-1) and programmed death ligand-1 (PD-L1) block evasion of cancers from immune surveillance. Analyzing hot spot residues in PPI is important for small-molecule drug development. In order to find out hot spots on PPI interface in PD-1/PD-L1 complex, we analyzed PPI in PD-1/PD-L1 with a new analysis method, 3-dimensional scattered pair interactions energies (3D-SPIEs), which assorts significant interactions with fragment molecular orbital (FMO) method. By additionally analyzing PPI in PD-1/antibody and PD-L1/antibody complexes, and small-ligand interactions in PD-L1/peptide and PD-L1/small-molecule complexes, we narrowed down the hot spot region with 3D-SPIEs-based interaction map, which integrates PPI and small-ligand interactions. Based on the map, there are two hot spot regions in PPI of PD-1/PD-L1 and the first hot spot region is important for inhibitors. In particular, LY56, LE58, and LN66 in the first hot spot of PD-L1 are important for PD-L1-antibodies and small-inhibitors in common, while LM115 is important for small-inhibitors. Therefore, the 3D-SPIEs-based map would provide valuable information for designing new small-molecule inhibitors to inhibit PPI of PD-1/PD-L1 and the FMO/3D-SPIEs method provides an effectual tool to understand PPI and integrate PPI and small-ligand interactions at a quantum mechanical level.


Subject(s)
Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/metabolism , B7-H1 Antigen/chemistry , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/metabolism , Protein Interaction Domains and Motifs , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Quantum Theory , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
3.
Bioinformatics ; 24(11): 1413-5, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18417489

ABSTRACT

UNLABELLED: Pharmaceutical industry has been striving to reduce the costs of drug development and increase productivity. Among the many different attempts, drug repositioning (retargeting existing drugs) comes into the spotlight because of its financial efficiency. We introduce IDMap which predicts novel relationships between targets and chemicals and thus is capable of repositioning the marketed drugs by using text mining and chemical structure information. Also capable of mapping commercial chemicals to possible drug targets and vice versa, IDMap creates convenient environments for identifying the potential lead and its targets, especially in the field of drug repositioning. AVAILABILITY: IDMap executable and its user manual including color images are freely available to non-commercial users at http://www.equispharm.com/idmap


Subject(s)
Artificial Intelligence , Database Management Systems , Databases, Factual , Drug Design , Drug Therapy/methods , Pharmaceutical Preparations/chemistry , Software , Information Storage and Retrieval/methods
4.
BMC Struct Biol ; 7: 47, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17625021

ABSTRACT

BACKGROUND: EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. RESULTS: Here we report for the first time the 2.1-A resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic alpha/beta hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other alpha/beta hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the beta8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. CONCLUSION: Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.


Subject(s)
Esterases/chemistry , Esterases/metabolism , Amino Acid Sequence , Chromatography, Gel , Circular Dichroism , Crystallization , Crystallography, X-Ray , Dimerization , Enzyme Stability , Esterases/genetics , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Substrate Specificity
5.
Bioorg Med Chem Lett ; 16(14): 3772-6, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16698266

ABSTRACT

Mental retardation is the most common and debilitating condition for individuals with Down syndrome (DS). The hyper-activation of DYRK1A by overexpression causes significant learning and memory deficits in DS-model mice. Thus far, no mechanism-based drug has been developed to address this. After a combination of in silico and in vitro screenings, two DYRK1A inhibitors were isolated that are active in a cell-based assay. Further optimization could lead to a novel drug discovery that could address DS learning and memory deficits.


Subject(s)
Down Syndrome/drug therapy , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Amino Acids/chemistry , Animals , Binding Sites , Disease Models, Animal , Down Syndrome/physiopathology , Enzyme Inhibitors/isolation & purification , Humans , Hydrogen Bonding , Learning Disabilities/drug therapy , Learning Disabilities/physiopathology , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Mice , Molecular Structure , Dyrk Kinases
6.
J Agric Food Chem ; 54(3): 935-41, 2006 Feb 08.
Article in English | MEDLINE | ID: mdl-16448205

ABSTRACT

Flavonoids, a group of naturally occurring antioxidants and metal chelators, can be used as tyrosinase inhibitors due to their formation of copper-flavonoid complexes. Thus, to investigate the underlying inhibition mechanism, a large group of flavonoids from several major flavones and flavonols were tested using fluorescence quenching spectroscopy. In addition, large differences in the tyrosinase inhibitory activities and chelating capacities according to the location of the hydroxyl group(s) in combination with the A and B rings in the flavonoids were confirmed. Accordingly, the major conclusions from this work are as follows: (i) The tyrosinase inhibitory activity is not only dependent on the number of hydroxyl groups in the flavonoids, (ii) the enzyme is primarily quenched by the hydroxyl group(s) of A and B rings on the ether side of the flavonoids, and (iii) the tyrosinase inhibitory activity of 7,8,3',4'-tetrahydroxyflavone is supported by a virtual model of docking with the mushroom tyrosinase, which depicts the quenching of the enzyme. The results also demonstrated that the dihydroxy substitutions in the A and B rings are crucial for Cu2+-chelate formation, thereby influencing the tyrosinase inhibitory activity.


Subject(s)
Agaricales/enzymology , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Copper/chemistry , Copper/pharmacology , Models, Molecular , Molecular Sequence Data , Monophenol Monooxygenase/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL