Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 772, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278790

ABSTRACT

Biological molecule-semiconductor interfacing has triggered numerous opportunities in applied physics such as bio-assisted data storage and computation, brain-computer interface, and advanced distributed bio-sensing. The introduction of electronics into biological embodiment is being quickly developed as it has great potential in providing adaptivity and improving functionality. Reciprocally, introducing biomaterials into semiconductors to manifest bio-mimetic functionality is impactful in triggering new enhanced mechanisms. In this study, we utilize the vulnerable perovskite semiconductors as a platform to understand if certain types of biomolecules can regulate the lattice and endow a unique mechanism for stabilizing the metastable perovskite lattice. Three tiers of biomolecules have been systematically tested and the results reveal a fundamental mechanism for the formation of a "reverse-micelle" structure. Systematic exploration of a large set of biomolecules led to the discovery of guiding principle for down-selection of biomolecules which extends the classic emulsion theory to this hybrid systems. Results demonstrate that by introducing biomaterials into semiconductors, natural phenomena typically observed in biological systems can also be incorporated into semiconducting crystals, providing a new perspective to engineer existing synthetic materials.


Subject(s)
Calcium Compounds , Micelles , Oxides , Titanium , Oxides/chemistry , Semiconductors , Biocompatible Materials
2.
Sci Adv ; 9(15): eade2338, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37058567

ABSTRACT

The retina is the essential part of the human visual system that receives light, converts it to neural signal, and transmits to brain for visual recognition. The red, green, and blue (R/G/B) cone retina cells are natural narrowband photodetectors (PDs) sensitive to R/G/B lights. Connecting with these cone cells, a multilayer neuro-network in the retina provides neuromorphic preprocessing before transmitting to brain. Inspired by this sophistication, we develop the narrowband (NB) imaging sensor combining R/G/B perovskite NB sensor array (mimicking the R/G/B photoreceptors) with a neuromorphic algorithm (mimicking the intermediate neural network) for high-fidelity panchromatic imaging. Compared to commercial sensors, we use perovskite "intrinsic" NB PD to exempt the complex optical filter array. In addition, we use an asymmetric device configuration to collect photocurrent without external bias, enabling a power-free photodetection feature. These results display a promising design for efficient and intelligent panchromatic imaging.

3.
Nat Commun ; 13(1): 7399, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456593

ABSTRACT

Halide perovskites show ubiquitous presences in growing fields at both fundamental and applied levels. Discovery, investigation, and application of innovative perovskites are heavily dependent on the synthetic methodology in terms of time-/yield-/effort-/energy- efficiency. Conventional wet chemistry method provides the easiness for growing thin film samples, but represents as an inefficient way for bulk crystal synthesis. To overcome these, here we report a universal solid state-based route for synthesizing high-quality perovskites, by means of simultaneously applying both electric and mechanical stress fields during the synthesis, i.e., the electrical and mechanical field-assisted sintering technique. We employ various perovskite compositions and arbitrary geometric designs for demonstration in this report, and establish such synthetic route with uniqueness of ultrahigh yield, fast processing and solvent-free nature, along with bulk products of exceptional quality approaching to single crystals. We exemplify the applications of the as-synthesized perovskites in photodetection and thermoelectric as well as other potentials to open extra chapters for future technical development.

4.
Small Methods ; 5(6): e2100080, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34927903

ABSTRACT

Double-walled carbon nanotubes (DWNTs) have shown potential as promising alternatives to conventional transparent electrodes owing to their solution processability as well as high conductivity and transparency. However, their DC to optical conductivity ratio is limited by the surrounding surfactants that prevent the p-doping of the DWNTs. To maximize the doping effectiveness, the surfactants are removed from the DWNTs, with negligible damage to the nanotubes, by calcination in an Ar atmosphere. The effective removal of the surfactants is characterized by various analyses, and the results show that the optimal calcination temperature is 400 °C. The conductivity of the DWNTs films improves when doped by triflic acid. While the conductivity increase of the surfactants-wrapped DWNT films is 31.9%, the conductivity increase of the surfactants-removed DWNT is found to be 59.7%. Using the surfactants-removed, p-doped, solution-processed transparent electrodes, inverted-type perovskite solar cells are fabricated, resulting in a power conversion efficiency of 17.7% without hysteresis. This work advances the application of DWNTs in transparent conductors, as the efficiency obtained is the highest value achieved to date for carbon nanotube electrode-based perovskite solar cells and solution-processable transparent electrode-based solar cells.

5.
Chem Soc Rev ; 50(23): 12915-12984, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34622260

ABSTRACT

Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.


Subject(s)
Calcium Compounds , Solar Energy , Electric Power Supplies , Humans , Oxides , Titanium
6.
Adv Sci (Weinh) ; 8(7): 2004092, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33854897

ABSTRACT

Recently, foldable electronics technology has become the focus of both academic and industrial research. The foldable device technology is distinct from flexible technology, as foldable devices have to withstand severe mechanical stresses such as those caused by an extremely small bending radius of 0.5 mm. To realize foldable devices, transparent conductors must exhibit outstanding mechanical resilience, for which they must be micrometer-thin, and the conducting material must be embedded into a substrate. Here, single-walled carbon nanotubes (CNTs)-polyimide (PI) composite film with a thickness of 7 µm is synthesized and used as a foldable transparent conductor in perovskite solar cells (PSCs). During the high-temperature curing of the CNTs-embedded PI conductor, the CNTs are stably and strongly p-doped using MoO x , resulting in enhanced conductivity and hole transportability. The ultrathin foldable transparent conductor exhibits a sheet resistance of 82 Ω sq.-1 and transmittance of 80% at 700 nm, with a maximum-power-point-tracking-output of 15.2% when made into a foldable solar cell. The foldable solar cells can withstand more than 10 000 folding cycles with a folding radius of 0.5 mm. Such mechanically resilient PSCs are unprecedented; further, they exhibit the best performance among the carbon-nanotube-transparent-electrode-based flexible solar cells.

7.
J Am Chem Soc ; 143(11): 4319-4328, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33705120

ABSTRACT

Black orthorhombic (B-γ) CsSnI3 with reduced biotoxicity and environmental impact and excellent optoelectronic properties is being considered as a promising eco-friendly candidate for high-performing perovskite solar cells (PSCs). A major challenge in a large-scale implementation of CsSnI3 PSCs includes the rapid transformation of Sn2+ to Sn4+ (within a few minutes) under an ambient-air condition. Here, we demonstrate that ambient-air stable B-γ CsSnI3 PSCs can be fabricated by incorporating N,N'-methylenebis(acrylamide) (MBAA) into the perovskite layer and by using poly(3-hexylthiophene) as the hole transporting material. The lone electron pairs of -NH and -CO units of MBAA are designed to form coordination bonding with Sn2+ in the B-γ CsSnI3, resulting in a reduced defect (Sn4+) density and better stability under multiple conditions for the perovskite light absorber. After a modification, the highest power conversion efficiency (PCE) of 7.50% is documented under an ambient-air condition for the unencapsulated CsSnI3-MBAA PSC. Furthermore, the MBAA-modified devices sustain 60.2%, 76.5%, and 58.4% of their initial PCEs after 1440 h of storage in an inert condition, after 120 h of storage in an ambient-air condition, and after 120 h of 1 Sun continuous illumination, respectively.

8.
Small ; 15(1): e1804005, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30609284

ABSTRACT

A simple, low-cost, large area, and continuous scalable coating method is proposed for the fabrication of hybrid organic-inorganic perovskite solar cells. A megasonic spray-coating method utilizing a 1.7 MHz megasonic nebulizer that could fabricate reproducible large-area planar efficient perovskite films is developed. The coating method fabricates uniform large-area perovskite film with large-sized grain since smaller and narrower sized mist droplets than those generated by existing ultrasonic spray methods could be generated by megasonic spraying. The volume flow rate of the CH3 NH3 PbI3 precursor solution and the reaction temperature are controlled, to obtain a high quality perovskite active layer. The devices reach a maximum efficiency of 16.9%, with an average efficiency of 16.4% from 21 samples. The applicability of megasonic spray coating to the fabrication of large-area solar cells (1 cm2 ), with a power conversion efficiency of 14.2%, is also demonstrated. This is a record high efficiency for large-area perovskite solar cells fabricated by continuous spray coating.

9.
J Phys Chem Lett ; 8(21): 5395-5401, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28994283

ABSTRACT

Transparent carbon electrodes, carbon nanotubes, and graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. An established MoO3 doping was used for  carbon electrode-based devices. The difference in the photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the difference in morphology and transmittance. Raman spectroscopy, and cyclic flexural testing revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells, though the difference was marginal. Overall, despite higher performance, the transfer step for graphene has lower reproducibility. Thus, the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

10.
ACS Appl Mater Interfaces ; 9(9): 7879-7884, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28217996

ABSTRACT

Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH3NH3PbI3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.

11.
Small ; 12(18): 2443-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26990492

ABSTRACT

A moth-eye nanostructured mp-TiO2 film using conventional lithography, nano-imprinting and polydimethyl-siloxane (PDMS) stamping methods is demonstrated for the first time. Power conversion efficiency of the moth-eye patterned perovskite solar cell is improved by ≈11%, which mainly results from increasing light harvesting efficiency by structural optical property.

12.
Nanoscale ; 7(48): 20725-33, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26602588

ABSTRACT

The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...