Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 12(7): 8378-8387, 2023 04.
Article in English | MEDLINE | ID: mdl-36562288

ABSTRACT

BACKGROUND: Small-cell lung cancer (SCLC) is the deadliest form of lung cancer but lacks targeted therapies. METHODS: We studied the effect of the natural product mistletoe lectin (ML) in pre-clinical models of SCLC, focusing on cell lines with amplification of the myc family oncogenes C-myc and N-myc. RESULTS: We found that ML treatment inhibits growth of SCLC cell lines in culture and induces apoptosis. ML treatment also decreases the expression of the amplified myc proteins. Over-expression of either C-myc or N-myc results in enhanced SCLC cell sensitivity to ML. In a mouse xenograft model of SCLC, treatment with ML results in decreased tumor growth over 4 weeks with evidence of increased apoptosis in tumors from treated animals. CONCLUSION: Overall, our results demonstrate that ML exhibits therapeutic potential in SCLC, that is at least partially dependent on myc protein expression.


Subject(s)
Biological Products , Carcinoma, Small Cell , Lung Neoplasms , Mistletoe , Small Cell Lung Carcinoma , Humans , Animals , Mice , Mistletoe/metabolism , Lectins/metabolism , Gene Amplification , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
2.
Mol Cancer Ther ; 22(2): 264-273, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36399634

ABSTRACT

The canonical model of "small cell lung cancer" (SCLC) depicts tumors arising from dual inactivation of TP53 and RB1. However, many genomic studies have persistently identified tumors with no RB1 mutations. Here, we examined RB1 protein expression and function in SCLC. RB1 expression was examined by IHC analysis of 62 human SCLC tumors. These studies showed that ∼14% of SCLC tumors expressed abundant RB1 protein, which is associated with neuroendocrine gene expression and is enriched in YAP1 expression, but no other lineage proteins that stratify SCLC. SCLC cells and xenograft tumors with RB1 protein expression were sensitive to growth inhibition by the CDK4/6 inhibitor palbociclib, and this inhibition was shown to be dependent on RB1 expression by CRISPR knockout. Furthermore, a patient with biopsy-validated wild-type RB1 SCLC who received the CDK4/6 inhibitor abemaciclib demonstrated a dramatic decrease in mutant TP53 ctDNA allelic fraction from 62.1% to 0.4% and decreased tumor mass on CT scans. Importantly, IHC of the diagnostic biopsy specimen showed RB1 positivity. Finally, we identified a transcriptomics-based RB1 loss-of-function signature that discriminates between SCLC cells with or without RB1 protein expression and validated it in the patient who was responsive to abemaciclib, suggesting its potential use to predict CDK4/6 inhibitor response in patients with SCLC. Our study demonstrates that RB1 protein is an actionable target in a subgroup of SCLC, a cancer that exhibits no currently targetable mutations.


Subject(s)
Lung Neoplasms , Retinal Neoplasms , Retinoblastoma , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Retinoblastoma Protein/genetics , Mutation , Cyclin-Dependent Kinase 4/genetics
3.
Proc Natl Acad Sci U S A ; 113(18): E2516-25, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27091985

ABSTRACT

Retinopathy of prematurity (ROP) causes 100,000 new cases of childhood blindness each year. ROP is initiated by oxygen supplementation necessary to prevent neonatal death. We used organ systems pharmacology to define the transcriptomes of mice that were cured of oxygen-induced retinopathy (OIR, ROP model) by hypoxia-inducible factor (HIF) stabilization via HIF prolyl hydroxylase inhibition using the isoquinolone Roxadustat or the 2-oxoglutarate analog dimethyloxalylglycine (DMOG). Although both molecules conferred a protective phenotype, gene expression analysis by RNA sequencing found that Roxadustat can prevent OIR by two pathways: direct retinal HIF stabilization and induction of aerobic glycolysis or indirect hepatic HIF-1 stabilization and increased serum angiokines. As predicted by pathway analysis, Roxadustat rescued the hepatic HIF-1 knockout mouse from retinal oxygen toxicity, whereas DMOG could not. The simplicity of systemic treatment that targets both the liver and the eye provides a rationale for protecting the severely premature infant from oxygen toxicity.


Subject(s)
Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1/metabolism , Isoquinolines/administration & dosage , Liver/metabolism , Retina/metabolism , Retinopathy of Prematurity/drug therapy , Retinopathy of Prematurity/prevention & control , Transcriptome/drug effects , Animals , Dose-Response Relationship, Drug , Glycine/administration & dosage , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Liver/drug effects , Mice , Mice, Inbred C57BL , Retina/drug effects , Treatment Outcome
4.
Arterioscler Thromb Vasc Biol ; 35(9): 1975-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26139464

ABSTRACT

OBJECTIVE: Thrombospondin-4 (TSP-4) is 1 of the 5 members of the thrombospondin protein family. TSP-1 and TSP-2 are potent antiangiogenic proteins. However, angiogenic properties of the 3 other TSPs, which do not contain the domains associated with the antiangiogeneic activity of TSP-1 and TSP-2, have not been explored. In our previous studies, we found that TSP-4 is expressed in the vascular matrix of blood vessels of various sizes and is especially abundant in capillaries. We sought to identify the function of TSP-4 in the regulation of angiogenesis. APPROACH AND RESULTS: The effect of TSP-4 in in vivo angiogenesis models and its effect on angiogenesis-related properties in cultured cells were assessed using Thbs4(-/-) mice, endothelial cells (EC) derived from these mice, and recombinant TSP-4. Angiogenesis was decreased in Thbs4(-/-) mice compared with wild-type mice. TSP-4 was detected in the lumen of the growing blood vessels. Mice expressing the P387 TSP-4 variant, which was previously associated with coronary artery disease and found to be more active in its cellular interactions, displayed greater angiogenesis compared with A387 form. Lung EC from Thbs4(-/-) mice exhibited decreased adhesion, migration, and proliferation capacities compared with EC from wild-type mice. Recombinant TSP-4 promoted proliferation and the migration of EC. Integrin α2 and gabapentin receptor α2δ-1 were identified as receptors involved in regulation of EC adhesion, migration, and proliferation by TSP-4. CONCLUSION: TSP-4, an extracellular matrix protein previously associated with tissue remodeling, is now demonstrated to possess proangiogenic activity.


Subject(s)
Apoptosis , DNA/genetics , Neovascularization, Pathologic/genetics , Thrombospondins/genetics , Animals , Cell Adhesion , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Thrombospondins/metabolism
5.
Am J Pathol ; 184(6): 1890-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24731446

ABSTRACT

Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver/metabolism , Oxygen/toxicity , Retinal Diseases/metabolism , Amino Acids, Dicarboxylic/pharmacology , Animals , Erythropoietin/genetics , Erythropoietin/metabolism , Hyperoxia/drug therapy , Hyperoxia/genetics , Hyperoxia/metabolism , Hyperoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver/pathology , Mice , Mice, Knockout , Retinal Diseases/chemically induced , Retinal Diseases/drug therapy , Retinal Diseases/genetics , Retinal Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL