Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 212 Suppl 2: S404-9, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26022440

ABSTRACT

Stat1(-/-) mice lack a response to interferon α, ß, and γ, allowing for replication of nonadapted wild-type (wt) Ebolavirus and Marburgvirus. We sought to establish a mouse model for efficacy testing of live attenuated recombinant vesicular stomatitis virus (rVSV)-based filovirus vaccine vectors using wt Ebolavirus and Marburgvirus challenge strains. While infection of immunocompetent mice with different rVSV-based filovirus vectors did not cause disease, infection of Stat1(-/-) mice with the same vectors resulted in systemic infection and lethal outcome for the majority of tested rVSVs. Despite differences in viral loads, organ tropism was remarkably similar between rVSV filovirus vaccine vectors and rVSVwt, with the exception of the brain. In conclusion, Stat1(-/-) mice are not an appropriate immunocompromised mouse model for efficacy testing of live attenuated, replication-competent rVSV vaccine vectors.


Subject(s)
Filoviridae/immunology , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Vaccines, Attenuated/immunology , Vesicular Stomatitis/immunology , Viral Vaccines/immunology , Animals , Chlorocebus aethiops , Disease Models, Animal , Ebolavirus/immunology , Filoviridae Infections/genetics , Filoviridae Infections/immunology , Filoviridae Infections/virology , Genetic Vectors/genetics , Genetic Vectors/immunology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/genetics , Marburg Virus Disease/immunology , Marburg Virus Disease/virology , Marburgvirus/immunology , Mice , STAT1 Transcription Factor/immunology , Vero Cells , Viral Load/immunology , Virus Replication/genetics , Virus Replication/immunology
2.
J Virol ; 85(3): 1214-23, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21084481

ABSTRACT

The first influenza pandemic of the new millennium was caused by a newly emerged swine-origin influenza virus (SOIV) (H1N1). This new virus is characterized by a previously unknown constellation of gene segments derived from North American and Eurasian swine lineages and the absence of common markers predictive of human adaptation. Overall, human infections appeared to be mild, but an alarming number of young individuals presented with symptoms atypical for seasonal influenza. The new SOIV also showed a sustained human-to-human transmissibility and higher reproduction ratio than common seasonal viruses, altogether indicating a higher pathogenic potential for this newly emerged virus. To study the virulence of the SOIV, we used a recently established cynomolgus macaque model and compared parameters of clinical disease, virology, host responses, and pathology/histopathology with a current seasonal H1N1 virus. We here show that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia that was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain. Unexpectedly, we observed heterogeneity among the two SOIV isolates in virus replication, host transcriptional and cytokine responses, and disease progression, demonstrating a higher pathogenic potential for A/Mexico/InDRE4487/2009. Differences in virulence may explain more severe disease, as was seen with certain individuals infected with the emerged pandemic influenza virus. Thus, the nonhuman primate model closely mimics influenza in humans.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Primate Diseases/pathology , Primate Diseases/virology , Animals , Child, Preschool , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Genetic Variation , Humans , Influenza, Human/virology , Macaca , Male , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Severity of Illness Index , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL