Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 7(1): 1147, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278981

ABSTRACT

Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.


Subject(s)
Heat-Shock Response , Macrocystis , Macrocystis/genetics , Heat-Shock Response/genetics , Thermotolerance/genetics , Genetic Variation , Climate Change , Genotype , Kelp/genetics , Kelp/growth & development
2.
Sci Rep ; 11(1): 14439, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262101

ABSTRACT

Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000-2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.


Subject(s)
DNA, Environmental , Kelp , Biodiversity , Environmental Monitoring
3.
Proc Biol Sci ; 286(1906): 20190846, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31288702

ABSTRACT

Detritus can fundamentally shape and sustain food webs, and shredders can facilitate its availability. Most of the biomass of the highly productive giant kelp, Macrocystis pyrifera, becomes detritus that is exported or falls to the seafloor as litter. We hypothesized that sea urchins process kelp litter through shredding, sloppy feeding and egestion, making kelp litter more available to benthic consumers. To test this, we conducted a mesocosm experiment in which an array of kelp forest benthic consumers were exposed to 13C- and 15N-labelled Macrocystis with or without the presence of sea urchins, Strongylocentrotus purpuratus. Our results showed that several detritivore species consumed significant amounts of kelp, but only when urchins were present. Although they are typically portrayed as antagonistic grazers in kelp forests, sea urchins can have a positive trophic role, capturing kelp litter before it is exported and making it available to a suite of benthic detritivores.


Subject(s)
Food Chain , Macrocystis , Strongylocentrotus purpuratus/physiology , Animals , Biomass , Carbon Isotopes , Invertebrates/metabolism , Nitrogen Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL