Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2757: 509-529, 2024.
Article in English | MEDLINE | ID: mdl-38668981

ABSTRACT

The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.


Subject(s)
Placozoa , Animals , Placozoa/genetics
2.
Microbiol Resour Announc ; 13(3): e0123423, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38358244

ABSTRACT

A strain of Agarivorans sp., named OAG1, predicted to be capable of degrading agar, was isolated from the Sea of Japan. Its 4.7 Mbp genome with 4,224 predicted protein-coding genes offers insight into the varied genes responsible for agar degradation, as observed in the comparative genomic study of Agarivorans species.

3.
Article in English | MEDLINE | ID: mdl-38105762

ABSTRACT

Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important upon discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acids (FAAs)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes, and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.

5.
Sci Rep ; 13(1): 7591, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37164992

ABSTRACT

This study is the first to demonstrate that deep ocean water (DOW) has physiological significant effects on squid. After 36 h of rearing squids, those reared with DOW had significantly higher total and free cholesterol levels and lower alanine transaminase activity in hemolymph as compared with those reared with surface sea water (SSW). SSW rearing also resulted in 6.95% weight loss, while DOW rearing caused only 2.5% weight loss, which might be due to liver metabolism suppression. Furthermore, both monovalent (sodium, chloride, and potassium ions) and divalent (calcium, inorganic phosphorus, and magnesium ions) ions in hemolymph were elevated when reared with DOW compared to those when reared with SSW. A study of genes expressed in the brain revealed that five genes were specifically remarked in DOW rearing. Most altered genes were neuropeptides, including those from vasopressin superfamily. These neuropeptides are involved in cholesterol and/or mineral metabolisms and physiological significant effects on squid. This study is the first report the effects of DOW on cholesterol and mineral metabolism of squid and will contribute to squid aquaculture using DOW.


Subject(s)
Decapodiformes , Water , Animals , Decapodiformes/genetics , Cholesterol , Oceans and Seas , Minerals
6.
Sci Rep ; 13(1): 8700, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248272

ABSTRACT

Deep ocean water (DOW) exerts positive effects on the growth of marine organisms, suggesting the presence of unknown component(s) that facilitate their aquaculture. We observed that DOW suppressed plasma cortisol (i.e., a stress marker) concentration in Japanese flounder (Paralichthys olivaceus) reared under high-density condition. RNA-sequencing analysis of flounder brains showed that when compared to surface seawater (SSW)-reared fish, DOW-reared fish had lower expression of hypothalamic (i.e., corticotropin-releasing hormone) and pituitary (i.e., proopiomelanocortin, including adrenocorticotropic hormone) hormone-encoding genes. Moreover, DOW-mediated regulation of gene expression was linked to decreased blood cortisol concentration in DOW-reared fish. Our results indicate that DOW activated osteoblasts in fish scales and facilitated the production of Calcitonin, a hypocalcemic hormone that acts as an analgesic. We then provide evidence that the Calcitonin produced is involved in the regulatory network of genes controlling cortisol secretion. In addition, the indole component kynurenine was identified as the component responsible for osteoblast activation in DOW. Furthermore, kynurenine increased plasma Calcitonin concentrations in flounders reared under high-density condition, while it decreased plasma cortisol concentration. Taken together, we propose that kynurenine in DOW exerts a cortisol-reducing effect in flounders by facilitating Calcitonin production by osteoblasts in the scales.


Subject(s)
Flounder , Neuropeptides , Animals , Flounder/genetics , Hydrocortisone/metabolism , Kynurenine/metabolism , Calcitonin/genetics , Calcitonin/metabolism , Pituitary Gland/metabolism , Neuropeptides/metabolism , Water/metabolism
7.
Gen Comp Endocrinol ; 336: 114257, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36868365

ABSTRACT

Vertebrate neurohypophysial hormones, i.e., vasopressin- and oxytocin-family peptides, exert versatile physiological actions via distinct G protein-coupled receptors. The neurohypophysial hormone receptor (NHR) family was classically categorized into four subtypes (V1aR, V1bR, V2R and OTR), while recent studies have identified seven subtypes (V1aR, V1bR, V2aR, V2bR, V2cR, V2dR and OTR; V2aR corresponds to the conventional V2R). The vertebrate NHR family were diversified via multiple gene duplication events at different scales. Despite intensive research effort in non-osteichthyes vertebrates such as cartilaginous fish and lamprey, the molecular phylogeny of the NHR family has not been fully understood. In the present study, we focused on the inshore hagfish (Eptatretus burgeri), another group of cyclostomes, and Arctic lamprey (Lethenteron camtschaticum) for comparison. Two putative NHR homologs, which were previously identified only in silico, were cloned from the hagfish and designated as ebV1R and ebV2R. In vitro, ebV1R, as well as two out of five Arctic lamprey NHRs, increased intracellular Ca2+ in response to exogenous neurohypophysial hormones. None of the examined cyclostome NHRs altered intracellular cAMP levels. Transcripts of ebV1R were detected in multiple tissues including the brain and gill, with intense hybridization signals in the hypothalamus and adenohypophysis, while ebV2R was predominantly expressed in the systemic heart. Similarly, Arctic lamprey NHRs showed distinct expression patterns, underscoring the multifunctionality of VT in the cyclostomes as in the gnathostomes. These results and exhaustive gene synteny comparisons provide new insights into the molecular and functional evolution of the neurohypophysial hormone system in vertebrates.


Subject(s)
Hagfishes , Pituitary Hormones, Posterior , Animals , Fishes , Hagfishes/classification , Hagfishes/genetics , Lampreys/genetics , Phylogeny , Vertebrates/genetics
8.
Genome Biol Evol ; 14(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36283693

ABSTRACT

The paper nautilus or greater argonaut, Argonauta argo, is a species of octopods which is characterized by its pelagic lifestyle and by the presence of a protective spiral-shaped shell-like eggcase in females. To reveal the genomic background of how the species adapted to the pelagic lifestyle and acquired its shell-like eggcase, we sequenced the draft genome of the species. The genome size was 1.1 Gb, which is the smallest among the cephalopods known to date, with the top 215 scaffolds (average length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified nearly intact HOX, Parahox, Wnt clusters, and some gene clusters that could probably be related to the pelagic lifestyle, such as reflectin, tyrosinase, and opsin. The gene models also revealed several homologous genes related to calcified shell formation in Conchiferan mollusks, such as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the homologous genes for such genes were also found in the genome of the shell-less octopus, as well as Nautilus, which has a true outer shell. Therefore, the draft genome sequence of Arg. argo presented here has helped us to gain further insights into the genetic background of the dynamic recruitment and dismissal of genes to form an important, converging extended phenotypic structure such as the shell and the shell-like eggcase. Additionally, it allows us to explore the evolution of from benthic to pelagic lifestyles in cephalopods and octopods.


Subject(s)
Genome , Mollusca , Animals , Female , Phylogeny , Mollusca/genetics , Genomics
9.
Microbiol Resour Announc ; 11(8): e0039822, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35862930

ABSTRACT

A strain of Pseudoalteromonas that degrades agar was isolated from the intestines of an alga-eating fish (Andamia tetradactyla). We named the strain KAN5 and report on the genome sequenced with the Oxford Nanopore Technologies platform. The 3.8-Mbp genome contains 3,428 protein-coding genes, and the genes involved in agar degradation were confirmed.

10.
Mar Pollut Bull ; 180: 113749, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596998

ABSTRACT

Concentrations of 13 phase-partitioned polycyclic aromatic hydrocarbons (PAHs) in seawater were monitored monthly off Oki Island, Japan, during 2015-2019 to elucidate seasonal variations, main source, and transport pathways of PAHs in the southwestern Sea of Japan. Total PAH (dissolved plus particulate) concentrations in surface seawater at 36°09.0'N, 133°17.3'E (site OK) were in the range 0.49-9.36 ng L-1 (mean 2.77, SD 2.05 ng L-1) with higher levels in summer-autumn, an order of magnitude lower than those in the East China Sea during 2005 and 2009-2011 and about one-third of those recorded in the Sea of Japan in 2008 and 2010. The main sources of dissolved and particulate PAHs were combustion products. Increasing dissolved PAH levels during July-October indicate that the area around southern Oki Island is impacted by PAH-rich summer continental-shelf water transported by the Tsushima Warm Current flowing from the East China Sea.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Coal , Environmental Monitoring , Japan , Polycyclic Aromatic Hydrocarbons/analysis , Seasons , Water Pollutants, Chemical/analysis
11.
Sci Rep ; 12(1): 4642, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301363

ABSTRACT

Some marine fishes are algae-feeding, and the microorganisms in their digestive tracts produce carbohydrate hydrolyzing enzymes such as agarose and fucosidase, which are potentially interesting resource for new functional enzymes. The purpose of this study was to establish a method for identifying and utilizing characteristic bacteria from the intestines of two algae-eating fish species: Andamia tetradactylus, which exclusively eats algae on the rock surface, and stellar rockskipper Entomacrodus stellifer, which feeds on both algae and invertebrates. We tested the species composition of the intestinal bacterial flora and found that Proteobacteria were commonly found both in species as in the common gut communities of marine fish, whereas Spirochaetes and Tenericutes occupied the flora of A. tetradactylus. We then performed anaerobic and aerobic cultures and isolated 34 and 44 strains including 48 strains belonged to Vibrio species from A. tetradactylus and E. stellifer. We observed that some Vibrio strains formed a clear boundary to avoid contacting other strains of bacteria. Whole-genome sequencing of such two Vibrio alginolyticus strains revealed two cyclic chromosomes commonly found in the genome of Vibrio species, and some unique genes encoding alginate lyase, chitinases, and type I-F CRISPR-associated endoribonuclease for the first time in Vibrio alginolyticus.


Subject(s)
Gastrointestinal Microbiome , Perciformes , Vibrio , Animals , Bacteria , Fishes/microbiology , Vibrio/genetics , Vibrio alginolyticus
12.
Sci Adv ; 8(9): eabk0331, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35245108

ABSTRACT

Vasopressin/oxytocin (VP/OT)-related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the "platytocin" system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an "antidiuretic hormone" and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.

13.
Zoolog Sci ; 39(1): 157-165, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35107003

ABSTRACT

The dynamics of microscopic marine plankton in coastal areas is a fundamental theme in marine biodiversity research, but studies have been limited because the only available methodology was collection of plankton using plankton-nets and microscopic observation. In recent years, environmental DNA (eDNA) analysis has exhibited potential for conducting comprehensive surveys of marine plankton diversity in water at fixed points and depths in the ocean. However, few studies have examined how eDNA analysis reflects the actual distribution and dynamics of organisms in the field, and further investigation is needed to determine whether it can detect distinct differences in plankton density in the field. To address this, we analyzed eDNA in seawater samples collected at 1 km intervals at three depths over a linear distance of approximately 3.0 km in the Seto Inland Sea. The survey area included a location with a high density of Acoela (Praesagittifera naikaiensis). However, the eDNA signal for this was little to none, and its presence would not have been noticed if we did not have this information beforehand. Meanwhile, eDNA analysis enabled us to confirm the presence of a species of Placozoa that was previously undiscovered in the area. In summary, our results suggest that the number of sequence reads generated from eDNA samples in our project was not sufficient to predict the density of a particular species. However, eDNA can be useful for detecting organisms that have been overlooked using other methods.


Subject(s)
DNA, Environmental , Animals , Biodiversity , Environmental Monitoring , Seawater
14.
Genes (Basel) ; 12(12)2021 11 29.
Article in English | MEDLINE | ID: mdl-34946873

ABSTRACT

Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.


Subject(s)
Animal Shells/chemistry , Nautilus/chemistry , Proteins/analysis , Animals , Conserved Sequence , Evolution, Molecular , Gene Expression Profiling , Nautilus/genetics , Phylogeny , Protein Domains , Proteins/genetics
15.
Mitochondrial DNA B Resour ; 6(4): 1451-1453, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33997282

ABSTRACT

The greater argonaut Argonauta argo is a species of the paper nautilus (Argonautidae), which is a family in Octopoda. In this paper, we report its full mitogenome sequence, which was obtained from a specimen collected in the Japan Seas near Oki Island, Shimane Prefecture, in Japan. The sequence was determined using the NGS Illumina HiSeq platform. With its 37 genes, the mitogenome shows a typical metazoan and Octopoda genomic structure, and similar to the mitogenome of the previously reported congener, A. hians. To confirm A. argo phylogenetic position in Octopoda, we conducted maximum likelihood phylogenetic analysis, using a data set including publicly available 17 Octopodiformes, five Decapodiformes, three Nautiloids and two outgroup Conchiferans. The result confirmed the affinity of Argonautidae to Tremoctopus, and the sister group position of this clade against the rest of incirrate Octopods. The mitogenome and phylogeny of A. argo reported here will be useful for future studies involving this enigmatic species, including on the reacquisition of external calcified shell structures in mollusks.

16.
Microbiol Resour Announc ; 10(15)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858928

ABSTRACT

We isolated a strain of Bacillus safensis, which we called IDN1, from natto sold in Indonesia. In order to gain insights into its genomic structure and understand its biology, we used the Oxford Nanopore MinION platform followed by PCR to verify the ends and determine its full circular genome sequence.

17.
Proc Biol Sci ; 287(1937): 20202004, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33081619

ABSTRACT

The removal of rival sperm from a female's sperm storage organ acts as a strong sperm competition avoidance mechanism, which has been reported only in internally fertilizing species and not at all in externally fertilizing species. This study demonstrated for the first time that nest-holding males of Bathygobius fuscus, an externally fertilizing marine fish, remove the sperm of rival sneaker males from the spawning nest by exhibiting tail-fanning behaviour within the nest. Males showed tail-fanning behaviour when semen was artificially injected into the nest but not when seawater was injected, and in open nests this behaviour resulted in higher paternity rates for the focal male. The sperm removal behaviour entails the risk of removing their own sperm; therefore, additional sperm release behaviour is likely necessary to benefit from the sperm removal effect. Consistent with this, males increased post-fanning sperm release behaviour more in the semen than in the seawater injection treatment. Moreover, males who had removed sperm for a longer time spent more time releasing sperm after the removal, suggesting that the additional sperm release behaviour compensated for the loss of their own sperm. These results suggest that sperm removal behaviour is not restricted to internally fertilizing organisms and deserves further investigation in this and other species.


Subject(s)
Perciformes/physiology , Sexual Behavior, Animal , Spermatozoa , Animals , Female , Fertilization , Male , Reproduction
18.
Mar Biotechnol (NY) ; 22(6): 760-771, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33098466

ABSTRACT

Watasenia scintillans, a sparkling enope squid, has bioluminescence organs to illuminate its body with its own luciferase activity. To clarify the molecular mechanism underlying its scintillation, we analysed high-throughput sequencing data acquired previously and obtained draft genome sequences accomplished with comparative genomic data among the cephalopods. The genome mapped by transcriptome data showed that (1) RNA editing contributed to transcriptome variation of lineage specific genes, such as W. scintillans luciferase, and (2) two types of luciferase enzymes were characterized with reasonable 3D models docked to a luciferin molecule. We report two different types of luciferase in one organism and possibly related to variety of colour types in the W. scintillans fluorescent organs.


Subject(s)
Decapodiformes/genetics , Luciferases/genetics , Luminescent Proteins/genetics , Animals , Cephalopoda/genetics , Color , Decapodiformes/enzymology , Decapodiformes/metabolism , Fluorescence , Genome , Luminescent Proteins/metabolism , Molecular Docking Simulation , Transcriptome
19.
Sci Rep ; 10(1): 10962, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620906

ABSTRACT

In cephalopods, all species are considered to be polyandrous because of their common life history and reproductive traits reflecting a polyandrous mating system. Contrary to this belief, here we show several lines of evidence for monogamy in the firefly squid, Watasenia scintillans. In this species, females are capable of long-term storage of spermatangia, and of egg spawning even after the complete disappearance of males following the breeding season. The stored spermatangia are distributed equally between bilateral pouches under the female's neck collar. Such a nonrandom pattern of sperm storage prompted us to hypothesize that females might engage in lifetime monandry. Hence, we genotyped female-stored spermatangia and offspring, and found that in 95% of females (18/19), all the spermatangia had been delivered from a single male and all the embryos in a clutch had been sired by spermatozoa from stored spermatangia. In males, throughout the reproductive season, relative testis mass was much smaller in W. scintillans than in all other cephalopods examined previously. The mean number of male-stored spermatophores was ~ 30, equivalent to only 2.5 matings. Our genetic, demographic and morphometrical data agree with a mathematical model predicting that monogyny is favored when potential mates are scarce. Together, these results suggest mutual monogamy in W. scintillans.


Subject(s)
Decapodiformes/physiology , Sexual Behavior, Animal/physiology , Animals , Decapodiformes/genetics , Female , Male , Microsatellite Repeats , Models, Biological , Reproduction/genetics , Reproduction/physiology , Seasons
20.
Methods ; 176: 55-61, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32151668

ABSTRACT

To identify non-protein coding as well as truncated or premature RNA sequences expressed and obtain more complete transcriptome information, we combined the MinION direct RNA-sequencing of a conventional poly(A) RNA purification method with poly(A)-tagging of the non-coding RNA (ncRNA) fraction. This approach was applied to transcriptome sequencing of the dicyemid mesozoan, Dicyema misakiense, which has minicircular mitochondrial DNA molecules where each molecule encodes a single gene, as well as the host. Using informatics analysis, we distinguished dicyemid RNAs from those of the host squid. The poly(A) RNAs were assigned to host mitochondrial genes, host nuclear protein-coding genes, Dicyema nuclear protein-coding genes, and Dicyema mitochondrial genes in the decreasing order. Our poly(A)-tailing method recovered significantly more ncRNAs from the host compared with the sequencing of poly(A) RNAs. Furthermore, our method captured various lengths of squid mitochondrial DNA (mtDNA) transcripts at different steps of maturation including a read of 3,500 bp, which covers 21% of the squid mitochondrial genome, possibly a premature host RNA product. In contrast, shorter and less abundant reads were recovered from the dicyemid mitochondrial RNAs (mtRNAs). Even the longest read was 307 bp covering only a part of a minicircle. This study revealed significantly different modes of the mitochondrial transcription between a mesozoan and the host. Our approach to perform direct RNA-sequencing combined with the poly(A)-tailing reaction can be an effective method to fully capture non-poly(A) transcripts in a wide range of organisms.


Subject(s)
Cephalopoda/genetics , Invertebrates/genetics , Parasites/genetics , RNA, Mitochondrial/genetics , RNA-Seq/methods , Animals , Cephalopoda/parasitology , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Poly A/genetics , Polyadenylation , Transcription, Genetic , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...