Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Photoacoustics ; 31: 100522, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37362869

ABSTRACT

Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.

2.
ACS Sens ; 7(10): 2987-2994, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36194687

ABSTRACT

Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-13C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-13C)alaninamide chemical shift is pH-sensitive, with a pKa of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO2. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 (p = 0.0057) and compartment 3 to 6.80 ± 0.05 (p = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO2, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO2, suggesting that it may reflect variations in tissue pH and pCO2. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO2, and pH in vivo.


Subject(s)
CD13 Antigens , Carbon Dioxide , Animals , Rats , Alanine , Carbamates , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Carbon Isotopes
3.
Commun Biol ; 5(1): 10, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013537

ABSTRACT

Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.


Subject(s)
Bicarbonates/metabolism , Food Deprivation , Gluconeogenesis , Liver/metabolism , Pyruvic Acid/metabolism , Animals , Biomarkers/metabolism , Male , Rats , Rats, Sprague-Dawley
4.
Front Physiol ; 12: 792769, 2021.
Article in English | MEDLINE | ID: mdl-34955898

ABSTRACT

As both a consumer and producer of glucose, the kidney plays a significant role in glucose homeostasis. Measuring renal gluconeogenesis requires invasive techniques, and less invasive methods would allow renal gluconeogenesis to be measured more routinely. Magnetic resonance spectroscopy and imaging of infused substrates bearing hyperpolarized carbon-13 spin labels allows metabolism to be detected within the body with excellent sensitivity. Conversion of hyperpolarized 1-13C pyruvate in the fasted rat liver is associated with gluconeogenic flux through phosphoenolpyruvate carboxykinase (PEPCK) rather than pyruvate dehydrogenase (PDH), and this study tested whether this was also the case in the kidney. The left kidney was scanned in fed and overnight-fasted rats either with or without prior treatment by the PEPCK inhibitor 3-mercaptopicolinic acid (3-MPA) following infusion of hyperpolarized 1-13C pyruvate. The 13C-bicarbonate signal normalized to the total metabolite signal was 3.2-fold lower in fasted rats (p = 0.00073) and was not significantly affected by 3-MPA treatment in either nutritional state. By contrast, the normalized [1-13C]aspartate signal was on average 2.2-fold higher in the fasted state (p = 0.038), and following 3-MPA treatment it was 2.8-fold lower in fed rats and 15-fold lower in fasted rats (p = 0.001). These results confirm that, unlike in the liver, most of the pyruvate-to-bicarbonate conversion in the fasted kidney results from PDH flux. The higher conversion to aspartate in fasted kidney and the marked drop following PEPCK inhibition demonstrate the potential of this metabolite as a marker of renal gluconeogenesis.

5.
NMR Biomed ; 34(11): e4584, 2021 11.
Article in English | MEDLINE | ID: mdl-34245482

ABSTRACT

It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid/analogs & derivatives , Ultraviolet Rays , Carbon-13 Magnetic Resonance Spectroscopy , Free Radicals , Metabolome , Spectrophotometry, Ultraviolet , Time Factors
6.
J Phys Chem Lett ; 11(16): 6873-6879, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787205

ABSTRACT

SA-BDPA is a water-soluble, narrow-line width radical previously used for dynamic nuclear polarization (DNP) signal enhancement in solid-state magic angle spinning NMR spectroscopy. Here, we report the first study using SA-BDPA under dissolution DNP conditions (6.7 T and 1.15 K). Longitudinal-detected (LOD)-electron spin resonance (ESR) and 13C DNP measurements were performed on samples containing 8.4 M [13C]urea dissolved in 50:50 water:glycerol (v/v) doped with either 60 or 120 mM SA-BDPA. Two distinct DNP mechanisms, both "pure" thermal mixing and a well-resolved solid effect could clearly be identified. The radical's ESR line width (30-40 MHz), broadened predominantly by dipolar coupling, excluded any contribution from the cross effect. Microwave frequency modulation increased the enhancement by DNP at the lower radical concentration but not at the higher radical concentration. These results are compared to data acquired with trityl radical AH111501, highlighting the unusual 13C DNP properties of SA-BDPA.

7.
NMR Biomed ; 33(7): e4303, 2020 07.
Article in English | MEDLINE | ID: mdl-32325540

ABSTRACT

d-amino acid oxidase (DAO) is a peroxisomal enzyme that catalyzes the oxidative deamination of several neutral and basic d-amino acids to their corresponding α-keto acids. In most mammalian species studied, high DAO activity is found in the kidney, liver, brain and polymorphonuclear leukocytes, and its main function is to maintain low circulating d-amino acid levels. DAO expression and activity have been associated with acute and chronic kidney diseases and with several pathologies related to N-methyl-d-aspartate (NMDA) receptor hypo/hyper-function; however, its precise role is not completely understood. In the present study we show that DAO activity can be detected in vivo in the rat kidney using hyperpolarized d-[1-13 C]alanine. Following a bolus of hyperpolarized d-alanine, accumulation of pyruvate, lactate and bicarbonate was observed only when DAO activity was not inhibited. The measured lactate-to-d-alanine ratio was comparable to the values measured when the l-enantiomer was injected. Metabolites downstream of DAO were not observed when scanning the liver and brain. The conversion of hyperpolarized d-[1-13 C]alanine to lactate and pyruvate was detected in blood ex vivo, and lactate and bicarbonate were detected on scanning the blood pool in the heart in vivo; however, the bicarbonate-to-d-alanine ratio was significantly lower compared with the kidney. These results demonstrate that the specific metabolism of the two enantiomers of hyperpolarized [1-13 C]alanine in the kidney and in the blood can be distinguished, underscoring the potential of d-[1-13 C]alanine as a probe of d-amino acid metabolism.


Subject(s)
Carbon Isotopes/metabolism , D-Amino-Acid Oxidase/metabolism , Lactic Acid/metabolism , Alanine , Animals , Bicarbonates/metabolism , Kidney/metabolism , Male , Metabolic Networks and Pathways , Myocardium/metabolism , Rats, Wistar , Signal-To-Noise Ratio
8.
Sci Rep ; 10(1): 6244, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32277103

ABSTRACT

Glutathione (GSH) is often upregulated in cancer, where it serves to mitigate oxidative stress. γ-glutamyl-transferase (GGT) is a key enzyme in GSH homeostasis, and compared to normal brain its expression is elevated in tumors, including in primary glioblastoma. GGT is therefore an attractive imaging target for detection of glioblastoma. The goal of our study was to assess the value of hyperpolarized (HP) γ-glutamyl-[1-13C]glycine for non-invasive imaging of glioblastoma. Nude rats bearing orthotopic U87 glioblastoma and healthy controls were investigated. Imaging was performed by injecting HP γ-glutamyl-[1-13C]glycine and acquiring dynamic 13C data on a preclinical 3T MR scanner. The signal-to-noise (SNR) ratios of γ-glutamyl-[1-13C]glycine and its product [1-13C]glycine were evaluated. Comparison of control and tumor-bearing rats showed no difference in γ-glutamyl-[1-13C]glycine SNR, pointing to similar delivery to tumor and normal brain. In contrast, [1-13C]glycine SNR was significantly higher in tumor-bearing rats compared to controls, and in tumor regions compared to normal-appearing brain. Importantly, higher [1-13C]glycine was associated with higher GGT expression and higher GSH levels in tumor tissue compared to normal brain. Collectively, this study demonstrates, to our knowledge for the first time, the feasibility of using HP γ-glutamyl-[1-13C]glycine to monitor GGT expression in the brain and thus to detect glioblastoma.


Subject(s)
Brain/diagnostic imaging , Glioblastoma/diagnosis , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , gamma-Glutamyltransferase/metabolism , Animals , Brain/pathology , Carbon Isotopes/administration & dosage , Carbon Isotopes/chemistry , Cell Line, Tumor , Dipeptides/administration & dosage , Dipeptides/chemistry , Feasibility Studies , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Male , Molecular Probes/administration & dosage , Molecular Probes/chemistry , Rats , Up-Regulation , Xenograft Model Antitumor Assays
9.
Acta Physiol (Oxf) ; 229(3): e13457, 2020 07.
Article in English | MEDLINE | ID: mdl-32072766

ABSTRACT

AIM: Arginase 2 (ARG2) is a mitochondrial enzyme that catalyses hydrolysis of l-arginine into urea and l-ornithine. In the kidney, ARG2 is localized to the S3 segment of the proximal tubule. It has been shown that expression and activity of this enzyme are upregulated in a variety of renal pathologies, including ischemia-reperfusion (IR) injury. However, the (patho)physiological role of ARG2 in the renal tubule remains largely unknown. METHODS: We addressed this question in mice with conditional knockout of Arg2 in renal tubular cells (Arg2lox/lox /Pax8-rtTA/LC1 or, cKO mice). RESULTS: We demonstrate that cKO mice exhibit impaired urea concentration and osmolality gradients along the corticomedullary axis. In a model of unilateral ischemia-reperfusion injury (UIRI) with an intact contralateral kidney, ischemia followed by 24 hours of reperfusion resulted in significantly more pronounced histological damage in ischemic kidneys from cKO mice compared to control and sham-operated mice. In parallel, UIRI-subjected cKO mice exhibited a broad range of renal functional abnormalities, including albuminuria and aminoaciduria. Fourteen days after UIRI, the cKO mice exhibited complex phenotype characterized by significantly lower body weight, increased plasma levels of early predictive markers of kidney disease progression (asymmetric dimethylarginine and symmetric dimethylarginine), impaired mitochondrial function in the ischemic kidney but no difference in kidney fibrosis as compared to control mice. CONCLUSION: Collectively, these results establish the role of ARG2 in the formation of corticomedullary urea and osmolality gradients and suggest that this enzyme attenuates kidney damage in ischemia-reperfusion injury.


Subject(s)
Arginase , Kidney/pathology , Reperfusion Injury , Animals , Arginase/physiology , Kidney Tubules , Mice , Mice, Knockout , Urea
10.
Sci Rep ; 10(1): 200, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932697

ABSTRACT

The metabolic shift induced in human CD4+ T lymphocytes by stimulation is characterized by an upregulation of glycolysis, leading to an augmentation in lactate production. This adaptation has already been highlighted with various techniques and reported in several previous studies. We herein propose a method to rapidly and noninvasively detect the associated increase in flux from pyruvate to lactate catalyzed by lactate dehydrogenase using hyperpolarized 13C magnetic resonance, a technique which can be used for in vivo imaging. It was shown that the conversion of hyperpolarized 13C-pyruvate to 13C-lactate during the one-minute measurement increased by a mean factor of 3.6 in T cells stimulated for 5 days as compared to resting T cells. This method can be extended to other metabolic substrates and is therefore a powerful tool to noninvasively analyze T cell metabolism, possibly in vivo.


Subject(s)
Adaptation, Physiological , Carbon Isotopes/analysis , Glycolysis , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Magnetic Resonance Imaging/methods , T-Lymphocytes/metabolism , Humans , Lactic Acid/metabolism , Leukocytes, Mononuclear/immunology , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , T-Lymphocytes/immunology
11.
NMR Biomed ; 33(3): e4243, 2020 03.
Article in English | MEDLINE | ID: mdl-31904900

ABSTRACT

Under normal conditions, the heart mainly relies on fatty acid oxidation to meet its energy needs. Changes in myocardial fuel preference are noted in the diseased and failing heart. The magnetic resonance signal enhancement provided by spin hyperpolarization allows the metabolism of substrates labeled with carbon-13 to be followed in real time in vivo. Although the low water solubility of long-chain fatty acids abrogates their hyperpolarization by dissolution dynamic nuclear polarization, medium-chain fatty acids have sufficient solubility to be efficiently polarized and dissolved. In this study, we investigated the applicability of hyperpolarized [1-13 C]octanoate to measure myocardial medium-chain fatty acid metabolism in vivo. Scanning rats infused with a bolus of hyperpolarized [1-13 C]octanoate, the primary metabolite observed in the heart was identified as [1-13 C]acetylcarnitine. Additionally, [5-13 C]glutamate and [5-13 C]citrate could be respectively resolved in seven and five of 31 experiments, demonstrating the incorporation of oxidation products of octanoate into the tricarboxylic acid cycle. A variable drop in blood pressure was observed immediately following the bolus injection, and this drop correlated with a decrease in normalized acetylcarnitine signal (acetylcarnitine/octanoate). Increasing the delay before infusion moderated the decrease in blood pressure, which was attributed to the presence of residual gas bubbles in the octanoate solution. No significant difference in normalized acetylcarnitine signal was apparent between fed and 12-hour fasted rats. Compared with a solution in buffer, the longitudinal relaxation of [1-13 C]octanoate was accelerated ~3-fold in blood and by the addition of serum albumin. These results demonstrate the potential of hyperpolarized [1-13 C]octanoate to probe myocardial medium-chain fatty acid metabolism as well as some of the limitations that may accompany its use.


Subject(s)
Caprylates/metabolism , Carbon Isotopes/metabolism , Citric Acid Cycle , Magnetic Resonance Imaging , Myocardium/metabolism , Animals , Arteries/metabolism , Blood Glucose/metabolism , Lactic Acid/blood , Male , Metabolic Networks and Pathways , Metabolome , Oxidation-Reduction , Rats, Wistar , Time Factors
12.
ACS Chem Neurosci ; 9(11): 2554-2562, 2018 11 21.
Article in English | MEDLINE | ID: mdl-29771492

ABSTRACT

The dynamics of l-lactate transport across the blood-brain barrier (BBB) and its cerebral metabolism are still subject to debate. We studied lactate uptake and intracellular metabolism in the mouse brain using hyperpolarized 13C magnetic resonance spectroscopy (MRS). Following the intravenous injection of hyperpolarized [1-13C]lactate, we observed that the distribution of the 13C label between lactate and pyruvate, which has been shown to be representative of their pool size ratio, is different in NMRI and C57BL/6 mice, the latter exhibiting a higher level of cerebral lactate dehydrogenase A ( Ldha) expression. On the basis of this observation, and an additional set of experiments showing that the cerebral conversion of [1-13C]lactate to [1-13C]pyruvate increases after exposing the brain to ultrasound irradiation that reversibly opens the BBB, we concluded that lactate transport is rate-limited by the BBB, with a 30% increase in lactate uptake after its disruption. It was also deduced from these results that hyperpolarized 13C MRS can be used to detect a variation in cerebral lactate uptake of <40 nmol in a healthy brain during an in vivo experiment lasting only 75 s, opening new opportunities to study the role of lactate in brain metabolism.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Animals , Blood-Brain Barrier/radiation effects , Brain/radiation effects , Carbon-13 Magnetic Resonance Spectroscopy , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactic Acid/radiation effects , Male , Mice , Mice, Inbred C57BL , Pyruvic Acid/radiation effects , Ultrasonic Waves
13.
Magn Reson Med ; 79(5): 2451-2459, 2018 05.
Article in English | MEDLINE | ID: mdl-29411415

ABSTRACT

PURPOSE: To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. METHODS: Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. RESULTS: Ultraviolet irradiation created nonpersistent radicals in a mixture containing 13 C-labeled pyruvic and butyric acids, and enabled the hyperpolarization of both substrates by dynamic nuclear polarization. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13 C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to ultraviolet irradiation. In the rat heart, the in vivo 13 C signals from lactate, alanine, bicarbonate, and acetylcarnitine were detected following the metabolism of the injected substrate mixture. CONCLUSION: Copolarization of two different 13 C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13 C-substrates may simplify the translation to clinical use, as no radical filtration is required prior to injection.


Subject(s)
Carbon Isotopes/metabolism , Magnetic Resonance Spectroscopy/methods , Myocardium/metabolism , Animals , Butyrates/metabolism , Carbohydrate Metabolism , Carbon Isotopes/analysis , Male , Pyruvic Acid/metabolism , Rats , Rats, Sprague-Dawley
14.
NMR Biomed ; 30(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28796319

ABSTRACT

Acetate has been proposed as an astrocyte-specific energy substrate for metabolic studies in the brain. The determination of the relative contribution of the intracellular and extracellular compartments to the acetate signal using diffusion-weighted magnetic resonance spectroscopy can provide an insight into the cellular environment and distribution volume of acetate in the brain. In the present study, localized 1 H nuclear magnetic resonance (NMR) spectroscopy employing a diffusion-weighted stimulated echo acquisition mode (STEAM) sequence at an ultra-high magnetic field (14.1 T) was used to investigate the diffusivity characteristics of acetate and N-acetylaspartate (NAA) in the rat brain in vivo during prolonged acetate infusion. The persistence of the acetate resonance in 1 H spectra acquired at very large diffusion weighting indicated restricted diffusion of acetate and was attributed to intracellular spaces. However, the significantly greater diffusion of acetate relative to NAA suggests that a substantial fraction of acetate is located in the extracellular space of the brain. Assuming an even distribution for acetate in intracellular and extracellular spaces, the diffusion properties of acetate yielded a smaller volume of distribution for acetate relative to water and glucose in the rat brain.


Subject(s)
Acetates/metabolism , Brain/metabolism , Diffusion Magnetic Resonance Imaging , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Male , Metabolome , Monte Carlo Method , Probability , Proton Magnetic Resonance Spectroscopy , Rats, Sprague-Dawley
15.
PLoS One ; 11(10): e0164557, 2016.
Article in English | MEDLINE | ID: mdl-27736925

ABSTRACT

BACKGROUND: 19F-MRI and 19F-MRS can identify specific cell types after in-vitro or in-vivo 19F-labeling. Knowledge on the potential to track in-vitro 19F-labeled immune cells in tumor models by 19F-MRI/MRS is scarce. AIM: To study 19F-based MR techniques for in-vivo tracking of adoptively transferred immune cells after in-vitro 19F-labeling, i.e. to detect and monitor their migration non-invasively in melanoma-bearing mice. METHODS: Splenocytes (SP) were labeled in-vitro with a perfluorocarbon (PFC) and IV-injected into non-tumor bearing mice. In-vitro PFC-labeled ovalbumin (OVA)-specific T cells from the T cell receptor-transgenic line OT-1, activated with anti-CD3 and anti-CD28 antibodies (Tact) or OVA-peptide pulsed antigen presenting cells (TOVA-act), were injected into B16 OVA melanoma-bearing mice. The distribution of the 19F-labelled donor cells was determined in-vivo by 19F-MRI/MRS. In-vivo 19F-MRI/MRS results were confirmed by ex-vivo 19F-NMR and flow cytometry. RESULTS: SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro yielding 3x1011-1.4x1012 19F-atoms/cell in the 3 groups. Adoptively transferred 19F-labeled SP, TOVA-act, and Tact were detected by coil-localized 19F-MRS in the chest, abdomen, and left flank in most animals (corresponding to lungs, livers, and spleens, respectively, with highest signal-to-noise for SP vs TOVA-act and Tact, p<0.009 for both). SP and Tact were successfully imaged by 19F-MRI (n = 3; liver). These in-vivo data were confirmed by ex-vivo high-resolution 19F-NMR-spectroscopy. By flow cytometric analysis, however, TOVA-act tended to be more abundant versus SP and Tact (liver: p = 0.1313; lungs: p = 0.1073; spleen: p = 0.109). Unlike 19F-MRI/MRS, flow cytometry also identified transferred immune cells (SP, Tact, and TOVA-act) in the tumors. CONCLUSION: SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro and detected in-vivo by non-invasive 19F-MRS/MRI in liver, lung, and spleen. The portion of 19F-labeled T cells in the adoptively transferred cell populations was insufficient for 19F-MRS/MRI detection in the tumor. While OVA-peptide-activated T cells (TOVA-act) showed highest infiltration into all organs, SP were detected more reliably by 19F-MRS/MRI, most likely explained by cell division of TOVA-act after injection, which dilutes the 19F content in the T cell-infiltrated organs. Non-dividing 19F-labeled cell species appear most promising to be tracked by 19F-MRS/MRI.


Subject(s)
Fluorine-19 Magnetic Resonance Imaging/methods , Fluorocarbons/metabolism , Magnetic Resonance Spectroscopy/methods , Melanoma, Experimental/diagnostic imaging , T-Lymphocytes/transplantation , Adoptive Transfer , Animals , Cell Line, Tumor , Cell Tracking/methods , Liver/diagnostic imaging , Liver/immunology , Lung/diagnostic imaging , Lung/immunology , Melanoma, Experimental/immunology , Mice , Spleen/diagnostic imaging , Spleen/immunology , Staining and Labeling , T-Lymphocytes/metabolism
16.
Angew Chem Int Ed Engl ; 55(36): 10626-9, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27483206

ABSTRACT

The γ-glutamyl transpeptidase (GGT) enzyme plays a central role in glutathione homeostasis. Direct detection of GGT activity could provide critical information for the diagnosis of several pathologies. We propose a new molecular probe, γ-Glu-[1-(13) C]Gly, for monitoring GGT activity in vivo by hyperpolarized (HP) (13) C magnetic resonance (MR). The properties of γ-Glu-[1-(13) C]Gly are suitable for in vivo HP (13) C metabolic analysis since the chemical shift between γ-Glu-[1-(13) C]Gly and its metabolic product, [1-(13) C]Gly, is large (4.3 ppm) and the T1 of both compounds is relatively long (30 s and 45 s, respectively, in H2 O at 9.4 T). We also demonstrate that γ-Glu-[1-(13) C]Gly is highly sensitive to in vivo modulation of GGT activity induced by the inhibitor acivicin.


Subject(s)
Enzyme Assays/methods , Nuclear Magnetic Resonance, Biomolecular/methods , gamma-Glutamyltransferase/metabolism , Animals , Enzyme Inhibitors/pharmacology , Glutathione/metabolism , Isoxazoles/pharmacology , Molecular Probes/metabolism , Rats , gamma-Glutamyltransferase/antagonists & inhibitors
17.
Phys Chem Chem Phys ; 18(18): 12409-13, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27093499

ABSTRACT

[1-(13)C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-(13)C]pyruvic acid, unextrapolated solution-state (13)C polarization greater than 60% was measured after dissolution and rapid transfer to a spectrometer magnet, demonstrating the signal enhancement attainable using optimized hardware. Slower rates of polarization under these conditions can be largely overcome with higher radical concentrations.


Subject(s)
Pyruvic Acid/chemistry , Carbon Isotopes/chemistry , Gadolinium/chemistry , Magnetic Resonance Spectroscopy , Microwaves
18.
Am J Physiol Heart Circ Physiol ; 309(12): H2058-66, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26453328

ABSTRACT

Hyperpolarized carbon-13 magnetic resonance spectroscopy ((13)C MRS) enables the sensitive and noninvasive assessment of the metabolic changes occurring during myocardial ischemia-reperfusion. Ischemia-reperfusion models using hyperpolarized (13)C MRS are established in heart preparations ex vivo and in large animals in vivo, but an in vivo model in small animals would be advantageous to allow the study of reperfusion metabolism with neuroendocrine and inflammatory responses intact with the option to perform a greater number of experiments. A novel intact rat model of ischemia-reperfusion is presented that incorporates hyperpolarized (13)C MRS to characterize reperfusion metabolism. Typically, in an in vivo model, a tissue input function (TIF) is required to account for apparent changes in the metabolism of injected hyperpolarized [1-(13)C]pyruvate resulting from changes in perfusion. Whereas the measurement of a TIF by metabolic imaging is particularly challenging in small animals, the ratios of downstream metabolites can be used as an alternative. The ratio of [(13)C]bicarbonate:[1-(13)C]lactate (RatioBic/Lac) measured within 1-2 min after coronary release decreased vs. baseline in ischemic rats (n = 10, 15-min occlusion, controls: n = 10; P = 0.017 for interaction, 2-way ANOVA). The decrease in oxidative pyruvate metabolism [RatioBic/Lac(Ischemia)/RatioBic/Lac(Baseline)] modestly correlated with area at risk (r = 0.66; P = 0.002). Hyperpolarized (13)C MRS was also used to examine alanine production during ischemia, which is observed in ex vivo models, but no significant change was noted; metrics incorporating [1-(13)C]alanine did not substantially improve the discrimination of ischemic-reperfused myocardium from nonischemic myocardium. This intact rat model, which mimics the human situation of reperfused myocardial infarction, could be highly valuable for the testing of new drugs to treat reperfusion injury, thereby facilitating translational research.


Subject(s)
Magnetic Resonance Spectroscopy , Myocardial Reperfusion Injury/metabolism , Alanine/metabolism , Animals , Bicarbonates/metabolism , Carbon Isotopes , Disease Models, Animal , Hemodynamics , Inflammation/metabolism , Inflammation/pathology , Lactates/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Myocardial Reperfusion Injury/pathology , Neurosecretory Systems/metabolism , Neurosecretory Systems/pathology , Oxidation-Reduction , Pyruvates/metabolism , Rats , Rats, Wistar
19.
Mol Biosyst ; 10(11): 2889-97, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25105420

ABSTRACT

Individuals infected with the human immunodeficiency virus (HIV) often suffer from concomitant metabolic complications. Treatment with antiretroviral therapy has also been shown to alter the metabolism of patients. Although chemometric analysis of nuclear magnetic resonance (NMR) spectra of human sera can distinguish normal sera (HIVneg) from HIV-infected sera (HIVpos) and sera from HIV-infected patients on antiretroviral therapy (ART), quantitative analysis of the discriminating metabolites and their relationship to disease status has yet to be determined. The objectives of the study were to analyze NMR spectra of HIVneg, HIVpos, and ART serum samples with a combination of chemometric and quantitative methods and to compare the NMR data with disease status as measured by viral load and CD4 count. High-resolution magic angle spinning (HRMAS) NMR spectroscopy was performed on HIVneg (N = 10), HIVpos (N = 10), and ART (N = 10) serum samples. Chemometric linear discriminant analysis classified the three groups of spectra with 100% accuracy. Concentrations of 12 metabolites were determined with a semi-parametric metabolite quantification method named high-resolution quantum estimation (HR-QUEST). CD4 count was directly associated with alanine (p = 0.008), and inversely correlated with both glutamine (p = 0.017) and glucose (p = 0.022) concentrations. A multivariate linear model using alanine, glutamine and glucose as covariates demonstrated an association with CD4 count (p = 0.038). The combined chemometric and quantitative analysis of the data disclosed previously unknown associations between specific metabolites and disease status. The observed associations with CD4 count are consistent with metabolic disorders that are commonly seen in HIV-infected patients.


Subject(s)
Acquired Immunodeficiency Syndrome/blood , Biomarkers/blood , HIV Seropositivity/blood , Magnetic Resonance Spectroscopy/methods , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/virology , Alanine/blood , CD4 Lymphocyte Count , Glucose/metabolism , Glutamine/blood , HIV Seropositivity/virology , Humans , Viral Load
20.
NMR Biomed ; 27(5): 578-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24596146

ABSTRACT

Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Metabolome , Proton Magnetic Resonance Spectroscopy , Humans , Logistic Models , Neoplasm Grading , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL