Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 8(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35735967

ABSTRACT

Estimation of muscle activity is very important as it can be a cue to assess a person's movements and intentions. If muscle activity states can be obtained through non-contact measurement, through visual measurement systems, for example, muscle activity will provide data support and help for various study fields. In the present paper, we propose a method to predict human muscle activity from skin surface strain. This requires us to obtain a 3D reconstruction model with a high relative accuracy. The problem is that reconstruction errors due to noise on raw data generated in a visual measurement system are inevitable. In particular, the independent noise between each frame on the time series makes it difficult to accurately track the motion. In order to obtain more precise information about the human skin surface, we propose a method that introduces a temporal constraint in the non-rigid registration process. We can achieve more accurate tracking of shape and motion by constraining the point cloud motion over the time series. Using surface strain as input, we build a multilayer perceptron artificial neural network for inferring muscle activity. In the present paper, we investigate simple lower limb movements to train the network. As a result, we successfully achieve the estimation of muscle activity via surface strain.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4848-4853, 2020 07.
Article in English | MEDLINE | ID: mdl-33019076

ABSTRACT

In this study, we present a human body shape statistical model including elderly people, which is constructed using principal component analysis (PCA) on 3D body scan data of approximately 130 people. As a pre-process step, a template human body mesh model is fitted to 3D scan data using a coarse-to-fine surface registration technique based on a conformal deformation method, in order to establish correspondences between the scans of different subjects possibly in different poses. To change body style by a small set of parameters, such as "age", "weight" and "height" or the easily measurable anthropometric parameters like "shoulder width", the linear transformations between these attributes and the first 10 principal component scores are obtained. We design a simple user interface to use this deformation model to generate different body styles easily. As a result, we were able to produce and show body styles capturing the characteristics of elderly people whose shoulders fell and back bent. Finally, as an application, we used our deformation method to generate different body types, performed forward dynamics simulations in an assistive device setting and visualized the differences in contact pressure distributions due to body shape changes.


Subject(s)
Human Body , Imaging, Three-Dimensional , Aged , Anthropometry , Humans , Models, Statistical , Principal Component Analysis
3.
Article in English | MEDLINE | ID: mdl-26736787

ABSTRACT

We present a forward dynamics (FD) simulation technique for human figures when they are supported by assistive devices. By incorporating a geometric skin deformation model, called linear blend skinning (skinning), into rigid-body skeleton dynamics, we can model a time-varying geometry of body surface plausibly and efficiently. Based on the skinning model, we also derive a Jacobian (a linear mapping) that maps contact forces exerted on the skin to joint torques, which is the main technical contribution of this paper. This algorithm allows us to efficiently simulate dynamics of human body that interacts with assistive devices. Experimental results showed that the proposed approach can generate plausible motions and can estimate pressure distribution that is roughly comparable to the tactile sensor data.


Subject(s)
Computer Simulation , Models, Theoretical , Self-Help Devices , Skin/anatomy & histology , Algorithms , Biomechanical Phenomena , Friction , Human Body , Humans , Joints/physiology , Robotics
SELECTION OF CITATIONS
SEARCH DETAIL
...