Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6778, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514802

ABSTRACT

An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear. Here, we show the three-dimensional structure and substrate preference of TGW6 using X-ray crystallography, thermal shift assays and fluorine nuclear magnetic resonance (19F NMR). The crystal structure of TGW6 was determined at 2.6 Å resolution and exhibited a six-bladed ß-propeller structure. Thermal shift assays revealed that TGW6 preferably interacted with indole compounds among the tested substrates, enzyme products and their analogs. Further analysis using 19F NMR with 1,134 fluorinated fragments emphasized the importance of indole fragments in recognition by TGW6. Finally, docking simulation analyses of the substrate and related fragments in the presence of TGW6 supported the interaction specificity for indole compounds. Herein, we describe the structure and substrate preference of TGW6 for interacting with indole fragments during substrate recognition. Uncovering the molecular details of TGW6 activity will stimulate the use of this enzyme for increasing crop yields and contributes to functional studies of IAA glycoconjugate hydrolases in auxin homeostasis.


Subject(s)
Glucose , Hydrolases , Plant Breeding , Indoleacetic Acids/chemistry , Indoles , Edible Grain
2.
Plant Physiol ; 193(3): 1758-1771, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37433052

ABSTRACT

Apiose is a unique branched-chain pentose found in plant glycosides and a key component of the cell wall polysaccharide pectin and other specialized metabolites. More than 1,200 plant-specialized metabolites contain apiose residues, represented by apiin, a distinctive flavone glycoside found in celery (Apium graveolens) and parsley (Petroselinum crispum) in the family Apiaceae. The physiological functions of apiin remain obscure, partly due to our lack of knowledge on apiosyltransferase during apiin biosynthesis. Here, we identified UGT94AX1 as an A. graveolens apiosyltransferase (AgApiT) responsible for catalyzing the last sugar modification step in apiin biosynthesis. AgApiT showed strict substrate specificity for the sugar donor, UDP-apiose, and moderate specificity for acceptor substrates, thereby producing various apiose-containing flavone glycosides in celery. Homology modeling of AgApiT with UDP-apiose, followed by site-directed mutagenesis experiments, identified unique Ile139, Phe140, and Leu356 residues in AgApiT, which are seemingly crucial for the recognition of UDP-apiose in the sugar donor pocket. Sequence comparison and molecular phylogenetic analysis of celery glycosyltransferases suggested that AgApiT is the sole apiosyltransferase-encoding gene in the celery genome. Identification of this plant apiosyltransferase gene will enhance our understanding of the physioecological functions of apiose and apiose-containing compounds.


Subject(s)
Apium , Flavones , Apium/genetics , Glycosides , Phylogeny
3.
Nat Commun ; 14(1): 4073, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429870

ABSTRACT

FtsZ polymerizes into protofilaments to form the Z-ring that acts as a scaffold for accessory proteins during cell division. Structures of FtsZ have been previously solved, but detailed mechanistic insights are lacking. Here, we determine the cryoEM structure of a single protofilament of FtsZ from Klebsiella pneumoniae (KpFtsZ) in a polymerization-preferred conformation. We also develop a monobody (Mb) that binds to KpFtsZ and FtsZ from Escherichia coli without affecting their GTPase activity. Crystal structures of the FtsZ-Mb complexes reveal the Mb binding mode, while addition of Mb in vivo inhibits cell division. A cryoEM structure of a double-helical tube of KpFtsZ-Mb at 2.7 Å resolution shows two parallel protofilaments. Our present study highlights the physiological roles of the conformational changes of FtsZ in treadmilling that regulate cell division.


Subject(s)
Cytoskeleton , Escherichia coli , Cell Division , Cryoelectron Microscopy , Klebsiella pneumoniae
4.
Phys Chem Chem Phys ; 24(32): 19346-19353, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35943083

ABSTRACT

The RNA-binding protein fused in sarcoma (FUS) forms ribonucleoprotein granules via liquid-liquid phase separation (LLPS) in the cytoplasm. The phase separation of FUS accelerates aberrant liquid-solid phase separation and leads to the onset of familial amyotrophic lateral sclerosis (ALS). We previously found that FUS forms two types of liquid condensates in equilibrium, specifically LP-LLPS (i.e., normal type) and HP-LLPS (i.e., aberrant type), each with different partial molar volumes. However, it is unclear how liquid condensates are converted to the pathogenic solid phase. Here, we report a mechanism underlying the aberrant liquid-to-solid phase transition of FUS liquid condensates and the inhibition of this transition with small molecules. We found that the liquid condensate formed via HP-LLPS had greatly reduced dynamics, which is a common feature of aged wild-type FUS droplets and the droplet-like assembly of the ALS patient-type FUS variant. The longer FUS remained on the HP-LLPS, the harder it was to transform it into a mixed state (i.e., one-phase). These results indicate that liquid-to-solid phase transition, namely the aging of droplets, is accelerated with HP-LLPS. Interestingly, arginine suppressed the aging of droplets and HP-LLPS formation more strongly than LP-LLPS formation. These data indicate that the formation of HP-LLPS via the one-phase state or LP-LLPS is a pathway leading to irreversible solid aggregates. Dopamine and pyrocatechol also suppressed HP-LLPS formation. Our data highlight the potential of HP-LLPS to be used as a therapeutic target and arginine as a plausible drug candidate for ALS-causing FUS.


Subject(s)
Amyotrophic Lateral Sclerosis , Sarcoma , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Arginine , Humans , Phase Transition , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
5.
J Am Chem Soc ; 143(47): 19697-19702, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34787417

ABSTRACT

The RNA-binding protein fused in sarcoma (FUS) undergoes liquid-liquid phase separation (LLPS) both in vivo and in vitro. Self-assembled liquid droplets of FUS transform into reversible hydrogels and into more irreversible and toxic aggregates. Although LLPS can be a precursor of irreversible aggregates, a generic method to study kinetics of the formation of LLPS has not been developed. Here, we demonstrated the pressure-jump kinetics of phase transition between the 1-phase state and FUS-LLPS states observed at low pressure (<2 kbar, LP-LLPS) and high pressure (>2 kbar, HP-LLPS) using high-pressure UV/vis spectroscopy. Absorbance (turbidity) changes were reproduced repeatedly using pressure cycles. The Johnson-Mehl-Avrami-Kolmogorov theory was used to understand droplet formation occurring via nucleation and growth. The Avrami exponent n, representing the dimensionality of growing droplets, and the reaction rate constant k were calculated. The HP-LLPS formation rate was ∼2-fold slower than that of LP-LLPS. The Avrami exponent obtained for both LLPS states could be explained by diffusion-limited growth. Nucleation and growth rates decreased during LP-LLPS formation (n = 0.51), and the nucleation rate decreased with a constant growth rate in HP-LLPS formation (n = 1.4). The HP-LLPS vanishing rate was ∼20-fold slower than that of LP-LLPS. This difference in vanishing rates indicates a stronger intermolecular interaction in HP-LLPS than in LP-LLPS, which might promote transformation into irreversible aggregates in the droplets. Further, direct transition from HP-LLPS to LP-LLPS was observed. This indicates that interconversion between LP-LLPS and HP-LLPS occurs in equilibrium. Formation of reversible liquid droplets, followed by phase transition into another liquid phase, could thus be part of the physiological maturation process of FUS-LLPS.


Subject(s)
RNA-Binding Protein FUS/metabolism , Kinetics , Phase Transition , Pressure , Protein Multimerization , RNA-Binding Protein FUS/chemistry
6.
Nat Commun ; 12(1): 5301, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489423

ABSTRACT

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.


Subject(s)
Active Transport, Cell Nucleus/genetics , C9orf72 Protein/chemistry , Peptides/chemistry , beta Karyopherins/chemistry , Binding Sites , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cloning, Molecular , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Humans , Models, Molecular , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Peptides/genetics , Peptides/metabolism , Phase Transition , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , beta Karyopherins/antagonists & inhibitors , beta Karyopherins/genetics , beta Karyopherins/metabolism
7.
Protein Expr Purif ; 188: 105975, 2021 12.
Article in English | MEDLINE | ID: mdl-34536500

ABSTRACT

Rice is the staple food for over half the world's population. Genes associated with rice yield include THOUSAND GRAIN WEIGHT 6 (TGW6), which negatively regulates the number of endosperm cells as well as grain weight. The 1-bp deletion allele of tgw6 cloned from the Indian landrace rice cultivar Kasalath, which has lost function, enhances both grain size and yield. TGW6 has been utilized as a target for breeding and genome editing to increase the yield of rice. In the present study, we describe an improved heterologous expression system of TGW6 in Escherichia coli to enable purification of the recombinant protein. The best expression was achieved using codon optimized TGW6 with a 30 amino acid truncation at the N-terminus (Δ30TGW6) in the Rosetta-gami 2(DE3) host strain. Furthermore, we found that calcium ions were critical for the purification of stable Δ30TGW6. Crystals of Δ30TGW6 were obtained using the sitting-drop vapor-diffusion method at 283 K, which diffracted X-rays to at least 2.6 Å resolution. Herein, we established an efficient procedure for the production and purification of TGW6 in sufficient quantities for structural and functional studies. Detailed information concerning the molecular mechanism of TGW6 will enable the design of more efficient ways to control the activity of the enzyme.


Subject(s)
Genome, Plant , Oryza/genetics , Plant Proteins/genetics , Seeds/genetics , Silent Mutation , Amino Acid Sequence , Calcium/chemistry , Cations, Divalent , Cloning, Molecular , Codon , Crystallization , Edible Grain , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Oryza/metabolism , Plant Breeding , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Seeds/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
8.
Mol Biol Cell ; 32(21): ar33, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495685

ABSTRACT

The mammalian cell nucleus is a highly organized organelle that contains membrane-less structures referred to as nuclear bodies (NBs). Some NBs carry specific RNA types that play architectural roles in their formation. Here, we show two types of RNase-sensitive DBC1-containing NBs, DBC1 nuclear body (DNB) in HCT116 cells and Sam68 nuclear body (SNB) in HeLa cells, that exhibit phase-separated features and are constructed using RNA polymerase I or II transcripts in a cell type-specific manner. We identified additional protein components present in DNB by immunoprecipitation-mass spectrometry, some of which (DBC1 and heterogeneous nuclear ribonucleoprotein L [HNRNPL]) are required for DNB formation. The rescue experiment using the truncated HNRNPL mutants revealed that two RNA-binding domains and intrinsically disordered regions of HNRNPL play significant roles in DNB formation. All these domains of HNRNPL promote in vitro droplet formation, suggesting the need for multivalent interactions between HNRNPL and RNA as well as proteins in DNB formation.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Nuclear Bodies/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/physiology , HeLa Cells , Humans , Nuclear Bodies/physiology , RNA-Binding Proteins/metabolism , Ribonucleases/metabolism , Ribonucleoproteins/metabolism
9.
J Biochem ; 170(1): 15-23, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34223614

ABSTRACT

Recent studies have revealed that cells utilize liquid-liquid phase separation (LLPS) as a mechanism in assembly of membrane-less organelles, such as RNP granules. The nucleus is a well-known membrane-bound organelle surrounded by the nuclear envelope; the nuclear pore complex on the nuclear envelope likely applies LLPS in the central channel to facilitate selective biological macromolecule exchange. Karyopherin-ß family proteins exclusively pass through the central channel with cargos by dissolving the phase separated hydrogel formed by the phenylalanine-glycine (FG) repeats-containing nucleoporins. Karyopherin-ßs also exhibit dissolution activity for the phase separation of cargo proteins. Many cargos, including RNA-binding proteins containing intrinsically disordered regions (IDRs), undergo phase separation; however, aberrant phase separation is linked to fatal neurodegenerative diseases. Multiple weak interactions between karyopherin-ßs and phase separation-prone proteins, such as FG repeats-containing nucleoporins or IDR-containing karyopherin-ß cargos, are likely to be important for passing through the nuclear pore complex and maintaining the soluble state of cargo, respectively. In this review, we discuss how karyopherin-ßs regulate phase separation to function.


Subject(s)
Cell Separation , Intrinsically Disordered Proteins/isolation & purification , beta Karyopherins/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Models, Molecular , beta Karyopherins/chemistry
10.
J Phys Chem B ; 125(25): 6821-6829, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34156864

ABSTRACT

Liquid-liquid phase separation (LLPS) of proteins and nucleic acids to form membraneless cellular compartments is considered to be involved in various biological functions. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vivo and in vitro. Here, we investigated the effects of pressure and temperature on the LLPS of FUS by high-pressure microscopy and high-pressure UV/vis spectroscopy. The phase-separated condensate of FUS was obliterated with increasing pressure but was observed again at a higher pressure. We generated a pressure-temperature phase diagram that describes the phase separation of FUS and provides a general understanding of the thermodynamic properties of self-assembly and phase separation of proteins. FUS has two types of condensed phases, observed at low pressure (LP-LLPS) and high pressure (HP-LLPS). The HP-LLPS state was more condensed and exhibited lower susceptibility to dissolution by 1,6-hexanediol and karyopherin-ß2 than the LP-LLPS state. Moreover, molecular dynamic simulations revealed that electrostatic interactions were destabilized, whereas cation-π, π-π, and hydrophobic interactions were stabilized in HP-LLPS. When cation-π, π-π, and hydrophobic interactions were transiently stabilized in the cellular environment, the phase transition to HP-LLPS occurred; this might be correlated to the aberrant enrichment of cytoplasmic ribonucleoprotein granules, leading to amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis , RNA-Binding Protein FUS/chemistry , Humans , Protein Domains , Temperature
11.
Int J Mol Sci ; 22(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567659

ABSTRACT

FtsZ is a key protein in bacterial cell division and is assembled into filamentous architectures. FtsZ filaments are thought to regulate bacterial cell division and have been investigated using many types of imaging techniques such as atomic force microscopy (AFM), but the time scale of the method was too long to trace the filament formation process. Development of high-speed AFM enables us to achieve sub-second time resolution and visualize the formation and dissociation process of FtsZ filaments. The analysis of the growth and dissociation rates of the C-terminal truncated FtsZ (FtsZt) filaments indicate the net growth and dissociation of FtsZt filaments in the growth and dissociation conditions, respectively. We also analyzed the curvatures of the full-length FtsZ (FtsZf) and FtsZt filaments, and the comparative analysis indicated the straight-shape preference of the FtsZt filaments than those of FtsZf. These findings provide insights into the fundamental dynamic behavior of FtsZ protofilaments and bacterial cell division.


Subject(s)
Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry , Cytoskeleton/chemistry , Microscopy, Atomic Force/methods , Protein Multimerization , Staphylococcus aureus/metabolism , Protein Conformation , Staphylococcus aureus/chemistry
12.
Commun Biol ; 4(1): 215, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594248

ABSTRACT

Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms-EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants.


Subject(s)
Dimethylallyltranstransferase/metabolism , Eucommiaceae/enzymology , Hemiterpenes/biosynthesis , Latex/biosynthesis , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Eucommiaceae/genetics , Hemiterpenes/chemistry , Latex/chemistry , Models, Molecular , Molecular Weight , Mutation , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Protein Conformation , Structure-Activity Relationship
13.
Sci Rep ; 11(1): 3754, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580145

ABSTRACT

Mutations in the RNA-binding protein FUS cause familial amyotropic lateral sclerosis (ALS). Several mutations that affect the proline-tyrosine nuclear localization signal (PY-NLS) of FUS cause severe juvenile ALS. FUS also undergoes liquid-liquid phase separation (LLPS) to accumulate in stress granules when cells are stressed. In unstressed cells, wild type FUS resides predominantly in the nucleus as it is imported by the importin Karyopherin-ß2 (Kapß2), which binds with high affinity to the C-terminal PY-NLS of FUS. Here, we analyze the interactions between two ALS-related variants FUS(P525L) and FUS(R495X) with importins, especially Kapß2, since they are still partially localized to the nucleus despite their defective/missing PY-NLSs. The crystal structure of the Kapß2·FUS(P525L)PY-NLS complex shows the mutant peptide making fewer contacts at the mutation site, explaining decreased affinity for Kapß2. Biochemical analysis revealed that the truncated FUS(R495X) protein, although missing the PY-NLS, can still bind Kapß2 and suppresses LLPS. FUS(R495X) uses its C-terminal tandem arginine-glycine-glycine regions, RGG2 and RGG3, to bind the PY-NLS binding site of Kapß2 for nuclear localization in cells when arginine methylation is inhibited. These findings suggest the importance of the C-terminal RGG regions in nuclear import and LLPS regulation of ALS variants of FUS that carry defective PY-NLSs.


Subject(s)
RNA-Binding Protein FUS/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/genetics , Binding Sites , Cell Nucleus/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Localization Signals/genetics , Protein Binding , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/ultrastructure , beta Karyopherins/genetics , beta Karyopherins/ultrastructure
14.
FEBS Lett ; 595(4): 452-461, 2021 02.
Article in English | MEDLINE | ID: mdl-33314039

ABSTRACT

The serine protease Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis possesses three insertion loops (IS1-IS3) on its surface, as compared to its mesophilic counterparts. Although IS1 and IS2 are required for maturation of Tk-subtilisin at high temperatures, the role of IS3 remains unknown. Here, CD spectroscopy revealed that IS3 deletion arrested Tk-subtilisin folding at an intermediate state, in which the central nucleus was formed, but the subsequent folding propagation into terminal subdomains did not occur. Alanine substitution of the aspartate residue in IS3 disturbed the intraloop hydrogen-bonding network, as evidenced by crystallographic analysis, resulting in compromised folding at high temperatures. Taking into account the high conservation of IS3 across hyperthermophilic homologues, we propose that the presence of IS3 is important for folding of hyperthermophilic subtilisins in high-temperature environments.


Subject(s)
Alanine/chemistry , Aspartic Acid/chemistry , Bacterial Proteins/chemistry , Subtilisin/chemistry , Thermococcus/chemistry , Alanine/metabolism , Amino Acid Substitution , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Chromogenic Compounds/chemistry , Chromogenic Compounds/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Hydrogen Bonding , Kinetics , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Subtilisin/genetics , Subtilisin/metabolism , Thermococcus/enzymology
15.
Biophys Physicobiol ; 17: 25-29, 2020.
Article in English | MEDLINE | ID: mdl-33110735

ABSTRACT

Low-complexity (LC) sequences, regions that are predominantly made up of limited amino acids, are often observed in eukaryotic nuclear proteins. The role of these LC sequences has remained unclear for decades. Recent studies have shown that LC sequences are important in the formation of membrane-less organelles via liquid-liquid phase separation (LLPS). The RNA binding protein, fused in sarcoma (FUS), is the most widely studied of the proteins that undergo LLPS. It forms droplets, fibers, or hydrogels using its LC sequences. The N-terminal LC sequence of FUS is made up of Ser, Tyr, Gly, and Gln, which form a labile cross-ß polymer core while the C-terminal Arg-Gly-Gly repeats accelerate LLPS. Normally, FUS localizes to the nucleus via the nuclear import receptor karyopherin ß2 (Kapß2) with the help of its C-terminal proline-tyrosine nuclear localization signal (PY-NLS). Recent findings revealed that Kapß2 blocks FUS mediated LLPS, suggesting that Kapß2 is not only a transport protein but also a chaperone which regulates LLPS during the formation of membrane-less organelles. In this review, we discuss the effects of the nuclear import receptors on LLPS.

16.
Mol Plant ; 13(11): 1570-1581, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32882392

ABSTRACT

Photosynthetic rate at the present atmospheric condition is limited by the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) because of its extremely low catalytic rate (kcat) and poor affinity for CO2 (Kc) and specificity for CO2 (Sc/o). Rubisco in C4 plants generally shows higher kcat than that in C3 plants. Rubisco consists of eight large subunits and eight small subunits (RbcS). Previously, the chimeric incorporation of sorghum C4-type RbcS significantly increased the kcat of Rubisco in a C3 plant, rice. In this study, we knocked out rice RbcS multigene family using the CRISPR-Cas9 technology and completely replaced rice RbcS with sorghum RbcS in rice Rubisco. Obtained hybrid Rubisco showed almost C4 plant-like catalytic properties, i.e., higher kcat, higher Kc, and lower Sc/o. Transgenic lines expressing the hybrid Rubisco accumulated reduced levels of Rubisco, whereas they showed slightly but significantly higher photosynthetic capacity and similar biomass production under high CO2 condition compared with wild-type rice. High-resolution crystal structural analysis of the wild-type Rubisco and hybrid Rubisco revealed the structural differences around the central pore of Rubisco and the ßC-ßD hairpin in RbcS. We propose that such differences, particularly in the ßC-ßD hairpin, may impact the flexibility of Rubisco catalytic site and change its catalytic properties.


Subject(s)
Oryza/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Sorghum/enzymology , CRISPR-Cas Systems , Carbon Dioxide/metabolism , Catalysis , Gene Knockout Techniques , Oryza/genetics , Photosynthesis , Plants, Genetically Modified , Protein Subunits/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Sorghum/genetics , Sulfuric Acid Esters/metabolism
17.
Protein Sci ; 29(9): 2000-2008, 2020 09.
Article in English | MEDLINE | ID: mdl-32713015

ABSTRACT

A GH1 ß-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.


Subject(s)
Basidiomycota/enzymology , Fungal Proteins/chemistry , beta-Glucosidase/chemistry , Crystallography, X-Ray , Protein Domains
18.
Biophys Rev ; 12(2): 519-539, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32189162

ABSTRACT

Progress in development of biophysical analytic approaches has recently crossed paths with macromolecule condensates in cells. These cell condensates, typically termed liquid-like droplets, are formed by liquid-liquid phase separation (LLPS). More and more cell biologists now recognize that many of the membrane-less organelles observed in cells are formed by LLPS caused by interactions between proteins and nucleic acids. However, the detailed biophysical processes within the cell that lead to these assemblies remain largely unexplored. In this review, we evaluate recent discoveries related to biological phase separation including stress granule formation, chromatin regulation, and processes in the origin and evolution of life. We also discuss the potential issues and technical advancements required to properly study biological phase separation.

19.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 2): 86-93, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32039890

ABSTRACT

FtsZ, a tubulin-like GTPase, is essential for bacterial cell division. In the presence of GTP, FtsZ polymerizes into filamentous structures, which are key to generating force in cell division. However, the structural basis for the molecular mechanism underlying FtsZ function remains to be elucidated. In this study, crystal structures of the enzymatic domains of FtsZ from Klebsiella pneumoniae (KpFtsZ) and Escherichia coli (EcFtsZ) were determined at 1.75 and 2.50 Šresolution, respectively. Both FtsZs form straight protofilaments in the crystals, and the two structures adopted relaxed (R) conformations. The T3 loop, which is involved in GTP/GDP binding and FtsZ assembly/disassembly, adopted a unique open conformation in KpFtsZ, while the T3 loop of EcFtsZ was partially disordered. The crystal structure of EcFtsZ can explain the results from previous functional analyses using EcFtsZ mutants.


Subject(s)
Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry , Escherichia coli/metabolism , Klebsiella pneumoniae/metabolism , Protein Conformation , Amino Acid Sequence , Cell Division , Crystallography, X-Ray , Models, Molecular , Sequence Homology
20.
Sci Rep ; 9(1): 20092, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882782

ABSTRACT

Addressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor. Crystallographic studies have enabled us to identify the optimal position for tethering the fluorophore that facilitates the high-affinity FtsZ binding of BOFP. Fluorescence anisotropy studies demonstrate that BOFP binds the FtsZ proteins from the Gram-positive pathogens Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae with Kd values of 0.6-4.6 µM. Significantly, BOFP binds the FtsZ proteins from the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii with an even higher affinity (Kd = 0.2-0.8 µM). Fluorescence microscopy studies reveal that BOFP can effectively label FtsZ in all the above Gram-positive and Gram-negative pathogens. In addition, BOFP is effective at monitoring the impact of non-fluorescent inhibitors on FtsZ localization in these target pathogens. Viewed as a whole, our results highlight the utility of BOFP as a powerful tool for identifying new broad-spectrum FtsZ inhibitors and understanding their mechanisms of action.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Fluorescent Dyes/chemistry , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Bacterial Proteins/antagonists & inhibitors , Cytoskeletal Proteins/antagonists & inhibitors , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...