Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cancer Cell ; 41(12): 2154-2165.e5, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38039963

ABSTRACT

Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Prospective Studies , Antigens, Neoplasm , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell
2.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37258038

ABSTRACT

BACKGROUND: Cellular immunotherapies using autologous tumor-infiltrating lymphocytes (TIL) can induce durable regression of epithelial cancers in selected patients with treatment-refractory metastatic disease. As the genetic engineering of T cells with tumor-reactive T-cell receptors (TCRs) comes to the forefront of clinical investigation, the rapid, scalable, and cost-effective detection of patient-specific neoantigen-reactive TIL remains a top priority. METHODS: We analyzed the single-cell transcriptomic states of 31 neoantigen-specific T-cell clonotypes to identify cell surface dysfunction markers that best identified the metastatic transcriptional states enriched with antitumor TIL. We developed an efficient method to capture neoantigen-reactive TCRs directly from resected human tumors based on cell surface co-expression of CD39, programmed cell death protein-1, and TIGIT dysfunction markers (CD8+ TILTP). RESULTS: TILTP TCR isolation achieved a high degree of correlation with single-cell transcriptomic signatures that identify neoantigen-reactive TCRs, making it a cost-effective strategy using widely available resources. Reconstruction of additional TILTP TCRs from tumors identified known and novel antitumor TCRs, showing that at least 39.5% of TILTP TCRs are neoantigen-reactive or tumor-reactive. Despite their substantial enrichment for neoantigen-reactive TCR clonotypes, clonal dynamics of 24 unique antitumor TILTP clonotypes from four patients indicated that most in vitro expanded TILTP populations failed to demonstrate neoantigen reactivity, either by loss of neoantigen-reactive clones during TIL expansion, or through functional impairment during cognate neoantigen recognition. CONCLUSIONS: While direct usage of in vitro-expanded CD8+ TILTP as a source for cellular therapy might be precluded by profound TIL dysfunction, isolating TILTP represents a streamlined effective approach to rapidly identify neoantigen-reactive TCRs to design engineered cellular immunotherapies against cancer.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Neoplasms/metabolism , Receptors, Antigen, T-Cell , Lymphocytes, Tumor-Infiltrating
3.
Science ; 375(6583): 877-884, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35113651

ABSTRACT

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Metastasis , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Transcriptome , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Regulatory Networks , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA-Seq , Single-Cell Analysis
4.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34266885

ABSTRACT

The adoptive transfer of naturally occurring T cells that recognize cancer neoantigens has led to durable tumor regressions in select patients with cancer. However, it remains unknown whether such T cells can be isolated from and used to treat patients with glioblastoma, a cancer that is refractory to currently available therapies. To answer this question, we stimulated patient blood-derived memory T cells in vitro using peptides and minigenes that represented point mutations unique to patients' tumors (ie, candidate neoantigens) and then tested their ability to specifically recognize these mutations. In a cohort of five patients with glioblastoma, we found that circulating CD4+ memory T cells from one patient recognized a cancer neoantigen harboring a mutation in the EED gene (EEDH189N) that was unique to that patient's tumor. This finding suggests that neoantigen-reactive T cells could indeed be isolated from patients with glioblastoma, thereby providing a rationale for further efforts to develop neoantigen-directed adoptive T cell therapy for this disease.


Subject(s)
Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Humans
5.
Clin Cancer Res ; 27(18): 5084-5095, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34168045

ABSTRACT

PURPOSE: Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the RAS oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots. Discovering T-cell receptors (TCR) that recognize shared mutated RAS antigens presented on MHC class I and class II molecules are thus promising reagents for "off-the-shelf" adoptive cell therapies (ACT) following insertion of the TCRs into lymphocytes. EXPERIMENTAL DESIGN: In this ongoing work, we screened for RAS antigen recognition in tumor-infiltrating lymphocytes (TIL) or by in vitro stimulation of peripheral blood lymphocytes (PBL). TCRs recognizing mutated RAS were identified from the reactive T cells. The TCRs were then reconstructed and virally transduced into PBLs and tested. RESULTS: Here, we detect and report multiple novel TCR sequences that recognize nonsynonymous mutant RAS hotspot mutations with high avidity and specificity and identify the specific class-I and -II MHC restriction elements involved in the recognition of mutant RAS. CONCLUSIONS: The TCR library directed against RAS hotspot mutations described here recognize RAS mutations found in about 45% of the Caucasian population and about 60% of the Asian population and represent promising reagents for "off-the-shelf" ACTs.


Subject(s)
Immunotherapy, Adoptive , Mutation , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , ras Proteins/genetics , Humans
6.
J Immunother ; 44(1): 1-8, 2021 01.
Article in English | MEDLINE | ID: mdl-33086340

ABSTRACT

Engineered T cells expressing tumor-specific T-cell receptors (TCRs) are emerging as a mode of personalized cancer immunotherapy that requires identification of TCRs against the products of known driver mutations and novel mutations in a timely fashion. We present a nonviral and non-next-generation sequencing platform for rapid, and efficient neoantigen-specific TCR identification and evaluation that does not require the use of recombinant cloning techniques. The platform includes an innovative method of TCRα detection using Sanger sequencing, TCR pairings and the use of TCRα/ß gene fragments for putative TCR evaluation. Using patients' samples, we validated and compared our new methods head-to-head with conventional approaches used for TCR discovery. Development of a unique demultiplexing method for identification of TCRα, adaptation of synthetic TCRs for gene transfer, and a reliable reporter system significantly shortens TCR discovery time over conventional methods and increases throughput to facilitate testing prospective personalized TCRs for adoptive cell therapy.


Subject(s)
Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/genetics , Immunotherapy, Adoptive/methods , Sequence Analysis, DNA/methods , T-Lymphocytes/metabolism , Antigens, Neoplasm/immunology , Cells, Cultured , Coculture Techniques , Genes, T-Cell Receptor alpha , Humans , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
7.
J Clin Invest ; 130(11): 5976-5988, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33016924

ABSTRACT

BACKGROUNDTherapeutic vaccinations against cancer have mainly targeted differentiation antigens, cancer-testis antigens, and overexpressed antigens and have thus far resulted in little clinical benefit. Studies conducted by multiple groups have demonstrated that T cells recognizing neoantigens are present in most cancers and offer a specific and highly immunogenic target for personalized vaccination.METHODSWe recently developed a process using tumor-infiltrating lymphocytes to identify the specific immunogenic mutations expressed in patients' tumors. Here, validated, defined neoantigens, predicted neoepitopes, and mutations of driver genes were concatenated into a single mRNA construct to vaccinate patients with metastatic gastrointestinal cancer.RESULTSThe vaccine was safe and elicited mutation-specific T cell responses against predicted neoepitopes not detected before vaccination. Furthermore, we were able to isolate and verify T cell receptors targeting KRASG12D mutation. We observed no objective clinical responses in the 4 patients treated in this trial.CONCLUSIONThis vaccine was safe, and potential future combination of such vaccines with checkpoint inhibitors or adoptive T cell therapy should be evaluated for possible clinical benefit in patients with common epithelial cancers.TRIAL REGISTRATIONPhase I/II protocol (NCT03480152) was approved by the IRB committee of the NIH and the FDA.FUNDINGCenter for Clinical Research, NCI, NIH.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Gastrointestinal Neoplasms , Immunity, Cellular , Mutation, Missense , Proto-Oncogene Proteins p21(ras) , RNA, Messenger , T-Lymphocytes/immunology , Amino Acid Substitution , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Female , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/therapy , Humans , Male , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology
8.
Clin Cancer Res ; 26(6): 1267-1276, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31996390

ABSTRACT

PURPOSE: The purpose of this study was to evaluate antigen experienced T cells in peripheral blood lymphocytes (PBL) for responses to p53 neoantigens. EXPERIMENTAL DESIGN: PBLs from patients with a mutated TP53 tumor were sorted for antigen-experienced T cells and in vitro stimulation (IVS) was performed with p53 neoantigens. The IVS cultures were stimulated with antigen-presenting cells expressing p53 neoantigens, enriched for 41BB/OX40 and grown with rapid expansion protocol. RESULTS: T-cell responses were not observed in the PBLs of 4 patients who did not have tumor-infiltrating lymphocyte (TIL) responses to mutated TP53. In contrast, 5 patients with TIL responses to mutated TP53 also had similar T-cell responses in their PBLs, indicating that the PBLs and TILs were congruent in p53 neoantigen reactivity. CD4+ and CD8+ T cells were specific for p53R175H, p53Y220C, or p53R248W neoantigens, including a 78% reactive T-cell culture against p53R175H and HLA-A*02:01. Tracking TCRB clonotypes (clonality, top ranked, and TP53 mutation-specific) supported the enrichment of p53 neoantigen-reactive T cells from PBLs. The same T-cell receptor (TCR) from the TIL was found in the IVS cultures in three cases and multiple unique TCRs were found in another patient. TP53 mutation-specific T cells also recognized tumor cell lines bearing the appropriate human leukocyte antigen restriction element and TP53 mutation, indicating these T cells could recognize processed and presented p53 neoantigens. CONCLUSIONS: PBL was a noninvasive source of T cells targeting TP53 mutations for cell therapy and can provide a window into intratumoral p53 neoantigen immune responses.See related commentary by Olivera et al., p. 1203.


Subject(s)
CD8-Positive T-Lymphocytes , Tumor Suppressor Protein p53 , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Oncogenes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Tumor Suppressor Protein p53/genetics
9.
J Clin Invest ; 129(11): 4992-5004, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31609250

ABSTRACT

Tumor-resident lymphocytes can mount a response against neoantigens expressed in microsatellite-stable gastrointestinal (GI) cancers, and adoptive transfer of neoantigen-specific lymphocytes has demonstrated antitumor activity in selected patients. However, whether peripheral blood could be used as an alternative minimally invasive source to identify lymphocytes targeting neoantigens in patients with GI cancer with relatively low mutation burden is unclear. We used a personalized high-throughput screening strategy to investigate whether PD-1 expression in peripheral blood could be used to identify CD8+ or CD4+ lymphocytes recognizing neoantigens identified by whole-exome sequencing in 7 patients with GI cancer. We found that neoantigen-specific lymphocytes were preferentially enriched in the CD8+PD-1+/hi or CD4+PD-1+/hi subsets, but not in the corresponding bulk or PD-1- fractions. In 6 of 7 individuals analyzed we identified circulating CD8+ and CD4+ lymphocytes targeting 6 and 4 neoantigens, respectively. Moreover, neoantigen-reactive T cells and a T cell receptor (TCR) isolated from the CD8+PD-1+ subsets recognized autologous tumor, albeit at reduced levels, in 2 patients with available cell lines. These data demonstrate the existence of circulating T cells targeting neoantigens in GI cancer patients and provide an approach to generate enriched populations of personalized neoantigen-specific lymphocytes and isolate TCRs that could be exploited therapeutically to treat cancer.


Subject(s)
Antigens, Neoplasm/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Neoplasms/immunology , Neoplasm Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Female , Humans , Male
10.
Cancer Discov ; 9(8): 1022-1035, 2019 08.
Article in English | MEDLINE | ID: mdl-31164343

ABSTRACT

Immunotherapies can mediate regression of human tumors with high mutation rates, but responses are rarely observed in patients with common epithelial cancers. This raises the question of whether patients with these common cancers harbor T lymphocytes that recognize mutant proteins expressed by autologous tumors that may represent ideal targets for immunotherapy. Using high-throughput immunologic screening of mutant gene products identified via whole-exome sequencing, we identified neoantigen-reactive tumor-infiltrating lymphocytes (TIL) from 62 of 75 (83%) patients with common gastrointestinal cancers. In total, 124 neoantigen-reactive TIL populations were identified, and all but one of the neoantigenic determinants were unique. The results of in vitro T-cell recognition assays demonstrated that 1.6% of the gene products encoded by somatic nonsynonymous mutations were immunogenic. These findings demonstrate that the majority of common epithelial cancers elicit immune recognition and open possibilities for cell-based immunotherapies for patients bearing these cancers. SIGNIFICANCE: TILs cultured from 62 of 75 (83%) patients with gastrointestinal cancers recognized neoantigens encoded by 1.6% of somatic mutations expressed by autologous tumor cells, and 99% of the neoantigenic determinants appeared to be unique and not shared between patients.This article is highlighted in the In This Issue feature, p. 983.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Disease Susceptibility , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/metabolism , Mutation , Biomarkers, Tumor , Gastrointestinal Neoplasms/pathology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
11.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Article in English | MEDLINE | ID: mdl-31164357

ABSTRACT

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytotoxicity, Immunologic/immunology , Head and Neck Neoplasms/drug therapy , Killer Cells, Natural/drug effects , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors , Proliferating Cell Nuclear Antigen/chemistry , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Apoptosis , Cell Proliferation , Cytotoxicity, Immunologic/drug effects , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Natural Cytotoxicity Triggering Receptor 2/immunology , Proliferating Cell Nuclear Antigen/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Nat Commun ; 10(1): 449, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683863

ABSTRACT

T cells targeting shared oncogenic mutations can induce durable tumor regression in epithelial cancer patients. Such T cells can be detected in tumor infiltrating lymphocytes, but whether such cells can be detected in the peripheral blood of patients with the common metastatic epithelial cancer patients is unknown. Using a highly sensitive in vitro stimulation and cell enrichment of peripheral memory T cells from six metastatic cancer patients, we identified and isolated CD4+, and CD8+ memory T cells targeting the mutated KRASG12D and KRASG12V variants, respectively, in three patients. In an additional two metastatic colon cancer patients, we detected CD8+ neoantigen-specific cells targeting the mutated SMAD5 and MUC4 proteins. Therefore, memory T cells targeting unique as well as shared somatic mutations can be detected in the peripheral blood of epithelial cancer patients and can potentially be used for the development of effective personalized T cell-based cancer immunotherapy across multiple patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Mucin-4/immunology , Proto-Oncogene Proteins p21(ras)/immunology , Smad5 Protein/immunology , Antigen Presentation , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Separation/methods , Coculture Techniques , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Dendritic Cells/cytology , Dendritic Cells/immunology , Humans , Immunologic Memory , Lymphatic Metastasis , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Molecular Targeted Therapy , Mucin-4/genetics , Mutation , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Smad5 Protein/genetics , Transduction, Genetic
13.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282837

ABSTRACT

Adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILs) targeting neoantigens can mediate tumor regression in selected patients with metastatic epithelial cancer. However, effectively identifying and harnessing neoantigen-reactive T cells for patient treatment remains a challenge and it is unknown whether current methods to detect neoantigen-reactive T cells are missing potentially clinically relevant neoantigen reactivities. We thus investigated whether the detection of neoantigen-reactive TILs could be enhanced by enriching T cells that express PD-1 and/or T cell activation markers followed by microwell culturing to avoid overgrowth of nonreactive T cells. In 6 patients with metastatic epithelial cancer, this method led to the detection of CD4+ and CD8+ T cells targeting 18 and 1 neoantigens, respectively, compared with 6 and 2 neoantigens recognized by CD4+ and CD8+ T cells, respectively, when using our standard TIL fragment screening approach. In 2 patients, no recognition of mutated peptides was observed using our conventional screen, while our high-throughput approach led to the identification of 5 neoantigen-reactive T cell receptors (TCRs) against 5 different mutations from one patient and a highly potent MHC class II-restricted KRASG12V-reactive TCR from a second patient. In addition, in a metastatic tumor sample from a patient with serous ovarian cancer, we isolated 3 MHC class II-restricted TCRs targeting the TP53G245S hot-spot mutation. In conclusion, this approach provides a highly sensitive platform to isolate clinically relevant neoantigen-reactive T cells or their TCRs for cancer treatment.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/transplantation , Neoplasms/therapy , Adult , Aged , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinogenesis/genetics , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Mutation , Neoplasms/genetics , Neoplasms/immunology , Oncogenes/genetics , Oncogenes/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Sensitivity and Specificity , Tumor Cells, Cultured
14.
Front Immunol ; 9: 1114, 2018.
Article in English | MEDLINE | ID: mdl-29875773

ABSTRACT

Proliferating cell nuclear antigen (PCNA) is considered as a hub protein and is a key regulator of DNA replication, repair, cell cycle control, and apoptosis. PCNA is overexpressed in many cancer types, and PCNA overexpression is correlated with cancer virulence. Membrane-associated PCNA is a ligand for the NKp44 (NCR2) innate immune receptor. The purpose of this study was to characterize the PCNA-binding site within NKp44. We have identified NKp44-derived linear peptide (pep8), which can specifically interact with PCNA and partly block the NKp44-PCNA interaction. We then tested whether NKp44-derived pep8 (NKp44-pep8) fused to cell-penetrating peptides (CPPs) can be employed for targeting the intracellular PCNA for the purpose of anticancer therapy. Treatment of tumor cells with NKp44-pep8, fused to R11-NLS cell-penetrating peptide (R11-NLS-pep8), reduced cell viability and promoted cell death, in various murine and human cancer cell lines. Administration of R11-NLS-pep8 to tumor-bearing mice suppressed tumor growth in the 4T1 breast cancer and the B16 melanoma in vivo models. We therefore identified the NKp44 binding site to PCNA and further developed an NKp44-peptide-based agent that can inhibit tumor growth through interfering with the function of intracellular PCNA in the tumor cell.


Subject(s)
Cell-Penetrating Peptides/metabolism , Natural Cytotoxicity Triggering Receptor 2/metabolism , Neoplasms/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Interaction Domains and Motifs , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Cell-Penetrating Peptides/chemistry , Female , Humans , Immunophenotyping , Male , Mice , Natural Cytotoxicity Triggering Receptor 2/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Protein Binding , Recombinant Fusion Proteins , Surface Plasmon Resonance
15.
Clin Cancer Res ; 24(22): 5562-5573, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29853601

ABSTRACT

Purpose: This was a study prospectively evaluating intratumoral T-cell responses to autologous somatic mutated neoepitopes expressed by human metastatic ovarian cancers.Patients and Methods: Tumor-infiltrating lymphocytes (TIL) were expanded from resected ovarian cancer metastases, which were analyzed by whole-exome and transcriptome sequencing to identify autologous somatic mutations. All mutated neoepitopes, independent of prediction algorithms, were expressed in autologous antigen-presenting cells and then cocultured with TIL fragment cultures. Secretion of IFNγ or upregulation of 41BB indicated a T-cell response.Results: Seven women with metastatic ovarian cancer were evaluated, and 5 patients had clear, dominant T-cell responses to mutated neoantigens, which were corroborated by comparison with the wild-type sequence, identification of the minimal epitope, human leukocyte antigen (HLA) restriction element(s), and neoantigen-specific T-cell receptor(s). Mutated neoantigens were restricted by HLA-B, -C, -DP, -DQ, and/or -DR alleles and appeared to principally arise from random, somatic mutations unique to each patient. We established that TP53 "hotspot" mutations (c.659A>G; p.Y220C and c.733G>A; p.G245S) expressed by two different patients' tumors were both immunogenic in the context of HLA-DRB3*02:02.Conclusions: Mutation-reactive T cells infiltrated ovarian cancer metastases at sufficient frequencies to warrant their investigation as adoptive cell therapy. In addition, transfer of TP53 "hotspot" mutation-reactive T-cell receptors into peripheral blood T cells could be evaluated as a gene therapy for a diverse range of tumor histologies. Clin Cancer Res; 24(22); 5562-73. ©2018 AACR See related commentary by McNeish, p. 5493.


Subject(s)
Antigens, Neoplasm/immunology , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Amino Acid Sequence , Cell Line, Tumor , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HLA Antigens/immunology , Histones/genetics , Histones/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Ovarian Neoplasms/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/immunology
16.
Front Immunol ; 8: 161, 2017.
Article in English | MEDLINE | ID: mdl-28261217

ABSTRACT

The natural killer (NK) cell activating receptor NKp46/NCR1 plays a critical role in elimination of virus-infected and tumor cells. The NCR1 gene can be transcribed into five different splice variants, but the functional importance and physiological distribution of NKp46 isoforms are not yet fully understood. Here, we shed light on differential expression of NKp46 splice variants in viral respiratory tract infections and their functional difference at the cellular level. NKp46 was the most predominantly expressed natural cytotoxicity receptor in the nasal lavage of patients infected with four respiratory viruses: respiratory syncytia virus, adenovirus, human metapneumovirus, or influenza A. Expression of NKp30 was far lower and NKp44 was absent in all patients. Domain 1-negative NKp46 splice variants (i.e., NKp46 isoform d) were the predominantly expressed isoform in nasal lavage following viral infections. Using our unique anti-NKp46 mAb, D2-9A5, which recognizes the D2 extracellular domain, and a commercial anti-NKp46 mAb, 9E2, which recognizes D1 domain, allowed us to identify a small subset of NKp46 D1-negative splice variant-expressing cells within cultured human primary NK cells. This NKp46 D1-negative subset also showed higher degranulation efficiency in term of CD107a surface expression. NK-92 cell lines expressing NKp46 D1-negative and NKp46 D1-positive splice variants also showed functional differences when interacting with targets. A NKp46 D1-negative isoform-expressing NK-92 cell line showed enhanced degranulation activity. To our knowledge, we provide the first evidence showing the physiological distribution and functional importance of human NKp46 splice variants under pathological conditions.

17.
J Immunol ; 195(4): 1705-12, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26157171

ABSTRACT

Both IL-1α and IL-1ß are highly inflammatory cytokines mediating a wide spectrum of diseases. A recombinant form of the naturally occurring IL-1R antagonist (IL-1Ra), which blocks IL-1R1, is broadly used to treat autoimmune and autoinflammatory diseases; however, blocking IL-1 increases the risk of infection. In this study, we describe the development of a novel form of recombinant IL-1Ra, termed chimeric IL-1Ra. This molecule is a fusion of the N-terminal peptide of IL-1ß and IL-1Ra, resulting in inactive IL-1Ra. Because the IL-1ß N-terminal peptide contains several protease sites clustered around the caspase-1 site, local proteases at sites of inflammation can cleave chimeric IL-1Ra and turn IL-1Ra active. We demonstrate that chimeric IL-1Ra reduces IL-1-mediated inflammation in vitro and in vivo. This unique approach limits IL-1 receptor blockade to sites of inflammation, while sparing a multitude of desired IL-1-related activities, including host defense against infections and IL-1-mediated repair.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/pharmacology , Receptors, Interleukin-1/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Animals , Cell Line , Humans , Inflammation/immunology , Inflammation/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Pancreatic Elastase/metabolism , Peptide Fragments , Protein Interaction Domains and Motifs/genetics , Proteolysis , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
18.
Immunol Lett ; 165(1): 32-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25839126

ABSTRACT

Most current methods for identifying peptides that are bound to a distinct MHC-I product in a given cell sample utilize detergent solubilization of membrane proteins followed by immunoaffinity purification. Since detergent traces and cell debris hamper subsequent peptide analysis, exceedingly large cell samples are often required. To avoid the use of detergents, truncated MHC-I heavy chains have recently been expressed by stable DNA transfection or retroviral transduction, resulting in the secretion of soluble MHC-I complexes to the growth medium. The electroporation of in vitro-transcribed mRNA achieves remarkable efficacy and uniformity of gene expression in numerous cell types, exhibiting exceedingly fast kinetics. We reasoned that mRNA transfection offers a simple, fast and widely applicable alternative to current gene delivery protocols for expressing secreted MHC-I products in cells of interest. To test this assumption we used mRNA to express soluble derivatives of HLA-A2 in the human AF10 B cell myeloma and 624mel melanoma and H-2K(d) in the mouse SP2/0 B cell myeloma. The level of MHC-I complexes secreted by these cells peaked within less than 24h post-transfection and they could be affinity-purified directly from the culture medium in considerably greater yields when compared to nonionic detergent lysates on a cell-to-cell basis. Mass-spectrometry analysis of eluted peptides revealed larger pools in the secreted material than in lysates with substantial overlap in composition. Our results introduce mRNA transfection as a powerful tool for determining the cell's MHC-I peptidome, which can be potentially applied to a broad range of cell types.


Subject(s)
Gene Expression , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Peptides/immunology , RNA, Messenger/genetics , Recombinant Proteins , Animals , Cell Line , Flow Cytometry , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/isolation & purification , Humans , Mice , Transfection
19.
PLoS One ; 10(2): e0118936, 2015.
Article in English | MEDLINE | ID: mdl-25719382

ABSTRACT

Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.


Subject(s)
Antibodies, Blocking/immunology , Diabetes Mellitus, Experimental/therapy , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 1/immunology , Animals , Antibodies, Blocking/therapeutic use , Cell Line, Tumor , Cells, Cultured , Diabetes Mellitus, Type 1/immunology , Female , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 1/metabolism , Protein Transport
20.
Mol Diagn Ther ; 19(1): 35-43, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25680504

ABSTRACT

OBJECTIVE: Hypercholesterolemia (increased blood cholesterol level) is considered a major risk factor for developing atherosclerotic diseases. As such, alerting individuals on hypercholesterolemic conditions is a crucial component in averting onset of atherosclerosis and its outcome-cardiovascular diseases. While common diagnostic tools such as cholesterol and lipoproteins determination are widely employed for hypercholesterolemia screening, their effectiveness has been questioned since they do not shed light on critical physiological factors like lipid oxidation and inflammation levels, which constitute prominent determinants for development of atherosclerotic diseases. The objective of this study is to develop a simple assay for identifying hypercholesterolemia, and assessing the impact of therapeutic treatments. METHODS: We developed a diagnostic assay based upon color transformations of polydiacetylene, a unique conjugated polymer, upon interactions with blood plasma obtained from healthy individuals, hypercholesterolemic patients, hypercholesterolemic patients treated with statin, and hypercholesterolemic patients treated with statin together with pomegranate extracts. The color transformations of the polymer were monitored through desktop color scanning combined with colorimetric image analysis. RESULTS: We show that the colorimetric assay was able to distinguish among plasma. Bio-analytical characterization reveals that the distinct colorimetric responses likely arise from interactions with plasma lipoproteins. Importantly, the colorimetric changes are not simply correlated with the relative abundance of cholesterol (or other lipids) in the plasma of hypercholesterolemic or healthy patients, but also reflect the presence of oxidized and inflamed species. CONCLUSIONS: This paper introduces a simple color assay for detection of hypercholesterolemia and monitoring the effect of therapies directed at mitigating this physiological condition. The colorimetric system might constitute a novel platform for assessing patient vulnerability towards the development of atherosclerosis.


Subject(s)
Colorimetry/methods , Hypercholesterolemia/diagnosis , Lipoproteins, LDL/blood , Lipoproteins/blood , Polymers/chemistry , Polyynes/chemistry , Anticholesteremic Agents/therapeutic use , Case-Control Studies , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/drug therapy , Lipoproteins/chemistry , Lipoproteins, LDL/chemistry , Lythraceae/chemistry , Male , Oxidation-Reduction , Plant Extracts/therapeutic use , Polyacetylene Polymer , Sensitivity and Specificity , Simvastatin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...