Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461513

ABSTRACT

Maternal infections during pregnancy pose an increased risk for neurodevelopmental psychiatric disorders (NPDs) in the offspring. Here, we examined age- and sex-dependent dynamic changes of the hippocampal synaptic proteome after maternal immune activation (MIA) in embryonic and adult mice. Adult male and female MIA offspring exhibited social deficits and sex-specific depression-like behaviours, among others, validating the model. Furthermore, we observed dose-, age-, and sex-dependent synaptic proteome differences. Analysis of the embryonic synaptic proteome implicates sphingolipid and ketoacid metabolism pathway disruptions during neurodevelopment for NPD-pertinent sequelae. In the embryonic hippocampus, prenatal immune activation also led to changes in neuronal guidance, glycosphingolipid metabolism important for signalling and myelination, and post-translational modification of proteins that regulate intercellular interaction and developmental timing. In adulthood, the observed changes in synaptoneurosomes revealed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, and hormone-mediated metabolism. Importantly, 68 of the proteins with differential abundance in the embryonic brains of MIA offspring were also altered in adulthood, 75% of which retained their directionality. These proteins are involved in synaptic organisation, neurotransmitter receptor regulation, and the vesicle cycle. A cluster of persistently upregulated proteins, including AKT3, PAK1/3, PPP3CA, formed a functional network enriched in the embryonic brain that is involved in cellular responses to environmental stimuli. To infer a link between the overlapping protein alterations and cognitive and psychiatric traits, we probed human phenome-wise association study data for cognitive and psychiatric phenotypes and all, but PORCN were significantly associated with the investigated domains. Our data provide insights into the dynamic effects of an early prenatal immune activation on developing and mature hippocampi and highlights targets for early intervention in individuals exposed to such immune challenges.

2.
Mol Psychiatry ; 27(11): 4464-4473, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948661

ABSTRACT

Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Mental Disorders , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Mental Disorders/genetics , Mice, Knockout , RNA Splicing Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...