Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cytotherapy ; 26(7): 769-777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38556961

ABSTRACT

BACKGROUND AIMS: The administration of human cell-processed therapeutic products (hCTPs) is associated with a risk of tumorigenesis due to the transformed cellular contaminants. To mitigate this risk, these impurities should be detected using sensitive and validated assays. The digital soft agar colony formation (D-SAC) assay is an ultrasensitive in vitro test for detecting tumorigenic transformed cells in hCTPs. METHODS: In this study, we first evaluated the colony formation efficiency (CFE) precision of tumorigenic reference cells in positive control samples according to a previously reported D-SAC assay protocol (Protocol I) from multiple laboratories. However, the CFE varied widely among laboratories. Thus, we improved and optimized the test protocol as Protocol II to reduce variability in the CFE of tumorigenic reference cells. Subsequently, the improved protocol was validated at multiple sites. Human mesenchymal stromal cells (hMSCs) were used as model cells, and positive control samples were prepared by spiking them with HeLa cells. RESULTS: Based on the previously reported protocol, the CFE was estimated using an ultra-low concentration (0.0001%) of positive control samples in multiple plates. Next, we improved the protocol to reduce the CFE variability. Based on the CFE results, we estimated the sample size as the number of wells (Protocol II) and assessed the detectability of 0.0001% HeLa cells in hMSCs to validate the protocol at multiple sites. Using Protocol I yielded low CFEs (mean: 30%) and high variability between laboratories (reproducibility coefficient of variance [CV]: 72%). In contrast, Protocol II, which incorporated a relatively high concentration (0.002%) of HeLa cells in the positive control samples, resulted in higher CFE values (mean: 63%) and lower variability (reproducibility CV: 18%). Moreover, the sample sizes for testing were estimated as the number of wells per laboratory (314-570 wells) based on the laboratory-specific CFE (42-76%). Under these conditions, all laboratories achieved a detection limit of 0.0001% HeLa cells in hMSCs in a predetermined number of wells. Moreover, colony formation was not observed in the wells seeded with hMSCs alone. CONCLUSIONS: The D-SAC assay is a highly sensitive and robust test for detecting malignant cells as impurities in hCTPs. In addition, optimal assay conditions were established to test tumorigenic impurities in hCTPs with high sensitivity and an arbitrary false negative rate.


Subject(s)
Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells , Humans , HeLa Cells , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cells/cytology , Cell Transformation, Neoplastic
2.
PLoS One ; 14(9): e0218229, 2019.
Article in English | MEDLINE | ID: mdl-31509532

ABSTRACT

ASB20123, a C-type natriuretic peptide/ghrelin chimeric peptide, was designed as a novel peptide and demonstrated full agonistic activity for natriuretic-peptide receptor B and a significantly longer half-life in plasma compared with the native peptide. We researched the toxicological profile of ASB20123, the correlation between the morphological change of the epiphyseal plate and bone and cartilage toxicity, and biomarkers to detect the toxicity. ASB20123 was systemically administered to male and female rats at daily dose levels of 0.5, 1.5, and 5.0 mg/kg/day for 4 weeks. In this study, toxicity was observed as changes related to bone and cartilage tissues, and no other toxicological changes were observed in all animals. Next, ASB20123 was administered to 12-month-old rats with a little epiphyseal plate. The toxic changes related to bone and cartilage tissues were not observed in any animal with a closed epiphyseal plate, indicating that the toxic changes were triggered by the growth-accelerating effect on the bone and cartilage. Furthermore, we searched for the biomarker related to the bone and cartilage toxicity using rats treated with ASB20123 at doses of 0.005, 0.05, 0.5, and 5.0 mg/kg/day for 4 weeks. A close correlation between necrosis/fibrosis in the epiphysis and metaphysis and thickness of the epiphyseal plate in the femur was confirmed in this study. A decrease in the bone mineral density (BMD) of the femur also was associated with the appearance of bone toxicity. These results indicated that the toxicity of ASB20123 was limited to bone- and cartilage-specific changes, and these changes were triggered by an excessive growth accelerating effect. Furthermore, our data suggested that the thickness of the epiphyseal plate and BMD could be reliable biomarkers to predict bone toxicity.


Subject(s)
Bone Development/drug effects , Bone and Bones/drug effects , Cartilage/drug effects , Natriuretic Peptide, C-Type/pharmacology , Animals , Biomarkers , Bone Density/drug effects , Bone and Bones/metabolism , Cartilage/metabolism , Epiphyses/drug effects , Female , Growth Plate/drug effects , Male , Natriuretic Peptide, C-Type/adverse effects , Natriuretic Peptide, C-Type/analogs & derivatives , Rats
3.
PLoS One ; 14(5): e0216340, 2019.
Article in English | MEDLINE | ID: mdl-31120905

ABSTRACT

C-type natriuretic peptide (CNP)-knockout (KO) rats exhibit impaired skeletal growth, with long bones shorter than those in wild-type (WT) rats. This study compared craniofacial morphology in the CNP-KO rat with that in the Spontaneous Dwarf Rat (SDR), a growth hormone (GH)-deficient model. The effects of subcutaneous administration of human CNP with 53 amino acids (CNP-53) from 5 weeks of age for 4 weeks on craniofacial morphology in CNP-KO rats were also investigated. Skulls of CNP-KO rats at 9 weeks of age were longitudinally shorter and the foramen magnum was smaller than WT rats. There were no differences in foramen magnum stenosis and midface hypoplasia between CNP-KO rats at 9 and 33 weeks of age. These morphological features were the same as those observed in CNP-KO mice and activated fibroblast growth factor receptor 3 achondroplasia-phenotype mice. In contrast, SDR did not exhibit foramen magnum stenosis and midface hypoplasia, despite shorter stature than in control rats. After administration of exogenous CNP-53, the longitudinal skull length and foramen magnum size in CNP-KO rats were significantly greater, and full or partial rescue was confirmed. The synchondrosis at the cranial base in CNP-KO rats is closed at 9 weeks, but not at 4 weeks of age. In contrast, synchondrosis closure in CNP-KO rats treated with CNP-53 was incomplete at 9 weeks of age. Administration of exogenous CNP-53 accelerated craniofacial skeletogenesis, leading to improvement in craniofacial morphology. As these findings in CNP-KO rats are similar to those in patients with achondroplasia, treatment with CNP-53 or a CNP analog may be able to restore craniofacial morphology and foramen magnum size as well as short stature.


Subject(s)
Constriction, Pathologic , Face/abnormalities , Foramen Magnum/pathology , Natriuretic Peptide, C-Type/deficiency , Natriuretic Peptide, C-Type/therapeutic use , Achondroplasia/drug therapy , Animals , Bone Development , Humans , Rats , Time Factors
4.
PLoS One ; 14(2): e0212680, 2019.
Article in English | MEDLINE | ID: mdl-30794654

ABSTRACT

C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) are physiological potent positive regulators of endochondral bone growth; therefore, the CNP/NPR-B signaling pathway is one of the most promising therapeutic targets for treating growth failure and dwarfism. In this article, we summarized the pharmacological properties of a novel CNP analog peptide ASB20123 as a therapeutic agent for short stature. ASB20123, one of the CNP/ghrelin chimeric peptides, is composed of CNP(1-22) and human ghrelin(12-28, E17D). Compared to CNP(1-22), ASB20123 showed similar agonist activity for NPR-B and improved biokinetics with a longer plasma half-life in rats. In addition, the distribution of ASB20123 to the cartilage was higher than that of CNP(1-22) after single subcutaneous (sc) injection to mice. These results suggested that the C-terminal part of ghrelin, which has clusters of basic amino acid residues and a BX7B motif, might contribute to the retention of ASB20123 in the extracellular matrix of the growth plate. Multiple sc doses of ASB20123 potently stimulated skeletal growth in rats in a dose-dependent manner, and sc infusion was more effective than bolus injection at the same dose. Our data indicated that high plasma levels of ASB20123 would not necessarily be required for bone growth acceleration. Thus, pharmaceutical formulation approaches for sustained-release dosage forms to allow chronic exposure to ASB20123 might be suitable to ensure drug effectiveness and safety.


Subject(s)
Bone Development/drug effects , Cartilage , Dwarfism , Growth Plate , Natriuretic Peptide, C-Type/pharmacology , Signal Transduction/drug effects , Animals , Cartilage/growth & development , Cartilage/pathology , Dwarfism/drug therapy , Dwarfism/metabolism , Dwarfism/pathology , Growth Plate/metabolism , Growth Plate/pathology , Mice , Mice, Inbred ICR , Natriuretic Peptide, C-Type/chemistry , Rats , Rats, Sprague-Dawley
5.
PLoS One ; 13(9): e0204172, 2018.
Article in English | MEDLINE | ID: mdl-30235256

ABSTRACT

Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature.


Subject(s)
Growth Plate/growth & development , Natriuretic Peptide, C-Type/deficiency , Natriuretic Peptide, C-Type/pharmacology , Animals , Biomarkers/blood , Body Weight/drug effects , Bone Remodeling , Female , Gene Knockout Techniques , Growth Plate/drug effects , Growth Plate/pathology , Humans , Hypertrophy , Ligands , MAP Kinase Signaling System/drug effects , Male , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Tibia/drug effects , Tibia/pathology
6.
PLoS One ; 13(3): e0194812, 2018.
Article in English | MEDLINE | ID: mdl-29566041

ABSTRACT

We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.


Subject(s)
Bone Diseases, Developmental/genetics , Natriuretic Peptide, C-Type/genetics , Animals , Bone Development/genetics , Bone Diseases, Developmental/mortality , Bone Diseases, Developmental/pathology , Dwarfism/genetics , Dwarfism/pathology , Female , Gene Deletion , Gene Knockout Techniques , Growth Plate/pathology , Osteogenesis/genetics , Rats , Rats, Inbred F344 , Rats, Transgenic
7.
Drug Metab Pharmacokinet ; 23(1): 67-72, 2008.
Article in English | MEDLINE | ID: mdl-18305376

ABSTRACT

Since rat organic cation transporter 1 (Oct1, Slc22a1) is expressed mainly in the liver and mediates drug transport, its activity may determine the hepatic handling of cationic drugs. Here, we studied the regulation mechanism of the expression of rat Oct1, focusing on the nuclear receptors. Various nuclear receptors are considered to regulate expressions of many genes for membrane transporters and enzymes that are involved in the drug absorption and disposition. Previously, we demonstrated that some ligands of nuclear receptors affected the transcriptional regulation of rat Oct1 when examined in the primary cultured rat hepatocytes. In the present study, dexamethasone, a ligand of glucocorticoid receptor, down-regulated the expression of rat Oct1. In addition, the transport activity of rat Oct1, evaluated by the uptake of substrates of rat Oct1, was decreased by treatment of dexamethasone in comparison with untreated rat hepatocytes, showing a good agreement with the change in mRNA level. In conclusion, these observations suggested that the expression of rat Oct1 gene and the apparent organic cation uptake activity of rat hepatocytes are down-regulated by dexamethasone presumably via a glucocorticoid receptor.


Subject(s)
Dexamethasone/metabolism , Dexamethasone/pharmacology , Liver/metabolism , Organic Cation Transporter 1/biosynthesis , Organic Cation Transporter 1/genetics , Receptors, Glucocorticoid/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Dose-Response Relationship, Drug , Ligands , Liver/drug effects , Male , Rats , Rats, Wistar
8.
Drug Metab Dispos ; 35(9): 1580-6, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17553914

ABSTRACT

Because rat organic cation transporter 1 (Oct1, SLC22a1) is expressed mainly in the liver and mediates drug transport, its activity may determine the hepatic handling of cationic drugs. Here, we studied the regulation mechanism of the expression of Oct1, focusing on the nuclear receptors. In vitro studies using cultured hepatocytes indicated that expression of Oct1 was up-regulated by treatment with pregnenolone-16 alpha-carbonitrile (PCN) and by overexpression of rat pregnane X receptor (PXR). In addition, isolated rat hepatocytes exhibited an increase of 1-methyl-4-phenylpyridinium (MPP(+)) uptake on treatment with PCN. When rats were subcutaneously administered PCN, an increase of biliary excretion clearance and distribution volume was observed for drugs such as MPP(+), metformin, and tetraethylammonium, although the effects on pharmacokinetic parameters were variable among the tested drugs. In addition, the expression of Oct2 in kidney was increased by treatment with PCN. Thus, PXR ligands appear to regulate the expression of organic cation transporters in rats and thereby to influence the pharmacokinetic properties of cationic drugs. Because PXR ligands include various clinically used drugs, alterations of hepatic drug handling may arise from interactions between cationic drugs that are substrates of Oct1 and ligands of PXR.


Subject(s)
Organic Cation Transporter 1/metabolism , Pharmaceutical Preparations/metabolism , Receptors, Steroid/drug effects , Animals , Area Under Curve , Cations/metabolism , Cell Separation , Cells, Cultured , Digoxin/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , In Vitro Techniques , Kinetics , Ligands , Liver/drug effects , Liver/metabolism , Male , Organic Cation Transporter 1/biosynthesis , Pregnane X Receptor , Pregnenolone Carbonitrile/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Trichloroacetic Acid/metabolism
9.
Drug Metab Dispos ; 32(5): 519-24, 2004 May.
Article in English | MEDLINE | ID: mdl-15100174

ABSTRACT

We investigated influx and efflux transporters involved in blood-brain barrier transport of the nonsedative H1-antagonist epinastine. The basal-to-apical transport of [14C]epinastine was markedly higher than that in the opposite direction in LLC-GA5-COL150 cells stably transfected with human multidrug resistance (MDR)1 gene. The brain-to-plasma concentration ratio of [14C]epinastine in mdr1a/b(-/-) mice was 3.2 times higher than that in wild-type mice. The uptake of both [3H]mepyramine and [14C]epinastine into immortalized rat brain capillary endothelial cells (RBEC)1 showed temperature and concentration dependence. The kinetic parameters, K(m), V(max), and uptake clearance (V(max)/K(m)), of the initial uptake of [3H]mepyramine and [14C]epinastine by RBEC1 were 150 microM, 41.8 nmol/min/mg protein, and 279 microl/min/mg protein for mepyramine and 10.0 mM, 339 nmol/min/mg protein, and 33.9 microl/min/mg protein for epinastine, respectively. The uptake of [3H]mepyramine and [14C]epinastine by RBEC1 was inhibited by organic cations such as quinidine, amantadine, and verapamil, but not by other organic cations, tetraethyl ammonium, guanidine, and carnitine. Organic anions such as benzoic acid, estrone-3-sulfate, taurocholate, and neutral digoxin were not inhibitory. Furthermore, some cationic H1 antagonists (chlorpheniramine, cyproheptadine, ketotifen, and desloratadine) inhibited the [3H]mepyramine and [14C]epinastine uptake into RBEC1. In conclusion, the present study demonstrated that the combination of efficient efflux transport by P-glycoprotein and poor uptake by the influx transporter, which is identical with that responsible for the uptake of mepyramine, account for the low brain distribution of epinastine.


Subject(s)
Blood-Brain Barrier/metabolism , Dibenzazepines/metabolism , Histamine H1 Antagonists/metabolism , Imidazoles/metabolism , Receptors, Histamine H1/metabolism , Animals , Biological Transport/physiology , Cell Line, Transformed , Dibenzazepines/chemistry , Dose-Response Relationship, Drug , Endothelium, Vascular/metabolism , Histamine H1 Antagonists/chemistry , Imidazoles/chemistry , LLC-PK1 Cells , Male , Mice , Mice, Knockout , Rats , Swine
10.
Mol Pharm ; 1(4): 281-9, 2004.
Article in English | MEDLINE | ID: mdl-15981587

ABSTRACT

The farnesoid X receptor (FXR, NR1H4) regulates bile acid and lipid homeostasis by acting as an intracellular bile acid-sensing transcription factor, resulting in altered expression of enzymes and transporters involved in bile acid synthesis and transport. Here, we quantitatively analyzed the alterations in expression levels of drug transporters, mainly organic anion-transporting polypeptides (oatp), in wild-type and FXR-null mice to evaluate the role of FXR in their expression and regulation by cholic acid. Changes in the mRNA amounts in liver, kidney, small intestine, and testis in FXR-null mice fed with or without a supplement of 0.5% cholic acid in the diet were analyzed by semiquantitative RT-PCR. In FXR-null mice, the mRNA levels of oatp1, oatp2, oatp3, and octn1 were lower than those of wild-type mice in kidney and testis, while there was no difference in liver or small intestine. Cholic acid feeding led to significantly decreased levels of expression of oatp1 and oct1 and an increased level of expression of oatp2 in wild-type mouse liver. In FXR-null mice, oatp1 and other transporters were downregulated in liver, kidney, and testis, whereas small intestine ASBT, octn2, and pept1 were upregulated. Our results suggested that FXR is involved in the transcriptional regulation of oatp and other transporters in a tissue-specific manner. Furthermore, the effect of cholic acid treatment indicates the involvement of regulatory mechanism(s) other than FXR.


Subject(s)
Cholic Acid/metabolism , DNA-Binding Proteins/physiology , Gene Expression Regulation/drug effects , Pharmaceutical Preparations/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/physiology , Animals , Bile Acids and Salts/metabolism , Biological Transport , Cholic Acid/administration & dosage , Cholic Acid/pharmacology , Crosses, Genetic , DNA-Binding Proteins/genetics , Diet , Gene Expression Profiling , Intestine, Small/metabolism , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/analysis , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Testis/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL