Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Org Lett ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950387

ABSTRACT

We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.

2.
Chem Sci ; 15(22): 8280-8294, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846404

ABSTRACT

The synthesis of enantiomerically pure compounds is a pivotal subject in the field of chemistry, with enantioselective catalysis currently standing as the primary approach for delivering specific enantiomers. Among these strategies, Cu-catalyzed asymmetric allylic substitution (AAS) is significant and irreplaceable, especially when it comes to the use of non-stabilized nucleophiles (pK a > 25). Although Cu-catalyzed AAS of prochiral substrates has also been widely developed, methodologies involving racemic/meso substrates are highly desirable, as the substrates undergo dynamic processes to give single enantiomer products. Inspired by the pioneering work of the Alexakis, Feringa and Gennari groups, Cu-catalyzed AAS has been continuously employed in deracemization and desymmetrization processes for the synthesis of enantiomerically enriched products. In this review, we mainly focus on the developments of Cu-catalyzed AAS with racemic/meso substrates over the past two decades, providing an explicit outline of the ligands employed, the scope of nucleophiles, the underlying dynamic processes and their practical applications.

3.
Chem Commun (Camb) ; 60(24): 3217-3225, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436212

ABSTRACT

High-throughput continuous flow technology has emerged as a revolutionary approach in chemical synthesis, offering accelerated experimentation and improved efficiency. With the aid of process analytical technology and automation, this system not only enables rapid optimisation of reaction conditions at the millimole to the picomole scale, but also facilitates automated scale-up synthesis. It can even achieve the self-planning and self-synthesis of small drug molecules with artificial intelligence incorporated in the system. The versatility of the system is highlighted by its compatibility with both electrochemistry and photochemistry, and its significant applications in organic synthesis and drug discovery. This highlight summarises its recent developments and applications, emphasising its significant impact on advancing research across multiple disciplines.

4.
J Colloid Interface Sci ; 660: 334-344, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244500

ABSTRACT

Due to the challenges involved in achieving high metal load, uniform metal dispersion and nanosized metal particles simultaneously, it is difficult to develop a simple protocol for the rapid and efficient synthesis of Pt-based composites for electrocatalytic ethanol oxidation reaction (EOR). In this study, a facile ultrafast thermal shock strategy via Joule heating was applied to fabricate a series of PtCoCu ternary nanoalloys decorated carbon nanotube composites (TS-PtCoCu/CNTs), without the need for a reducing agent or surfactant. The TS-PtCoCu/CNTs with optimal Pt content (∼15 %) exhibited excellent EOR activity, with mass and specific activity of 3.58 A mgPt-1 and 5.79 mA cm-2, respectively, which are 3.8 and 13.5 times higher than those of Pt/C. Compared with the control prepared through the traditional furnace annealing, the catalyst also showed excellent activity and stability. DFT calculations revealed that the TS-PtCoCu/CNTs possesses a downshifted d-band center, weakened CO adsorption and higher OH affinity compared with monometallic Pt, all of which lead to the preferred C1 pathway for EOR. This study demonstrates an ultrafast construction of a highly efficient Pt-Co-Cu ternary catalyst for EOR. Additionally, it provides insights into the reaction mechanism based on structural characterization, electrochemical characterization, and theoretical calculations.

5.
Chem Sci ; 14(34): 9024-9032, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655018

ABSTRACT

Chiral tetrahydroquinoxalines and dihydroquinoxalinones represent the core structure of many bioactive molecules. Herein, a simple and efficient Rh-thiourea-catalyzed asymmetric hydrogenation for enantiopure tetrahydroquinoxalines and dihydroquinoxalinones was developed under 1 MPa H2 pressure at room temperature. The reaction was magnified to the gram scale furnishing the desired products with undamaged yield and enantioselectivity. Application of this methodology was also conducted successfully under continuous flow conditions. In addition, 1H NMR experiments revealed that the introduction of a strong Brønsted acid, HCl, not only activated the substrate but also established anion binding between the substrate and the ligand. More importantly, the chloride ion facilitated heterolytic cleavage of dihydrogen to regenerate the active dihydride species and HCl, which was computed to be the rate-determining step. Further deuterium labeling experiments and density functional theory (DFT) calculations demonstrated that this reaction underwent a plausible outer-sphere mechanism in this new catalytic transformation.

6.
Chem Sci ; 14(16): 4351-4356, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37123175

ABSTRACT

Highly enantioselective Cu-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers is accomplished in this work. The use of Grignard reagents in combination with BF3·OEt2 and CuBr·SMe2/L2 is the key to enable employment of long-challenging low reactive allylic substrates in this AAA reaction. In addition, the approach exhibited a remarkable superiority in the construction of a stereogenic center involving challenging sterically hindered nucleophiles for both primary and secondary alkyl groups. Extension of this method under continuous flow conditions was also performed with excellent enantioselectivity in a short residence time. Mechanistic experiments indicated that the reaction proceeded through an in situ generated allylic bromide intermediate. All these advantages demonstrated that this chiral catalytic system is a valuable complement for existing asymmetric catalytic methods.

7.
Chem Commun (Camb) ; 58(77): 10845-10848, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36073300

ABSTRACT

A novel palladium polyaniline complex (Pd@PANI) was synthesized via a one-pot method using a low concentration of hydrogen peroxide (3 wt%) as a mild oxidant. Pd@PANI was employed to catalyze Suzuki-Miyaura cross-couplings with 0.11 ppm levels of palladium and high turnover numbers (up to 6.1 × 104). Various aromatic halides and aromatic boric acids were used as reaction partners to prepare the biaryl compounds in high yields. Application of the method in the synthesis of D-fructose derivatives was also performed. Furthermore, the catalyst was evaluated under a flow process to provide the corresponding products in good yields with shorter residence times and lower temperatures in more convenient operations compared with the batch conditions.


Subject(s)
Hydrogen Peroxide , Palladium , Aniline Compounds , Boric Acids , Catalysis , Fructose , Oxidants
8.
PLoS One ; 17(3): e0266088, 2022.
Article in English | MEDLINE | ID: mdl-35353844

ABSTRACT

Compound screening by in silico approaches has advantages in identifying high-activity leading compounds and can predict the safety of the drug. A key challenge is that the number of observations of drug activity and toxicity accumulation varies by target in different datasets, some of which are more understudied than others. Owing to an overall insufficiency and imbalance of drug data, it is hard to accurately predict drug activity and toxicity of multiple tasks by the existing models. To solve this problem, this paper proposed a two-stage transfer learning workflow to develop a novel prediction model, which can accurately predict drug activity and toxicity of the targets with insufficient observations. We built a balanced dataset based on the Tox21 dataset and developed a drug activity and toxicity prediction model based on Siamese networks and graph convolution to produce multitasking output. We also took advantage of transfer learning from data-rich targets to data-poor targets. We showed greater accuracy in predicting the activity and toxicity of compounds to targets with rich data and poor data. In Tox21, a relatively rich dataset, the prediction model accuracy for classification tasks was 0.877 AUROC. In the other five unbalanced datasets, we also found that transfer learning strategies brought the accuracy of models to a higher level in understudied targets. Our models can overcome the imbalance in target data and predict the compound activity and toxicity of understudied targets to help prioritize upcoming biological experiments.


Subject(s)
Workflow
9.
Biosens Bioelectron ; 197: 113738, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34740120

ABSTRACT

In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Neoplasms , Biomarkers, Tumor , Humans , Luminescence , Neoplasms/diagnosis
10.
Inorg Chem ; 60(10): 7070-7081, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33884866

ABSTRACT

Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.

11.
J Am Chem Soc ; 139(15): 5614-5624, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28362495

ABSTRACT

Mechanistic studies on Cu-catalyzed asymmetric additions of alkylzirconocene nucleophiles to racemic allylic halide electrophiles were conducted using a combination of isotopic labeling, NMR spectroscopy, kinetic modeling, structure-activity relationships, and new reaction development. Kinetic and dynamic NMR spectroscopic studies provided insight into the oligomeric Cu-ligand complexes, which evolve during the course of the reaction to become faster and more highly enantioselective. The Cu-counterions play a role in both selecting different pathways and in racemizing the starting material via formation of an allyl iodide intermediate. We quantify the rate of Cu-catalyzed allyl iodide isomerization and identify a series of conditions under which the formation and racemization of the allyl iodide occurs. We developed reaction conditions where racemic allylic phosphates are suitable substrates using new phosphoramidite ligand D. D also allows highly enantioselective addition to racemic seven-membered-ring allyl chlorides for the first time. 1H and 2H NMR spectroscopy experiments on reactions using allylic phosphates showed the importance of allyl chloride intermediates, which form either by the action of TMSCl or from an adventitious chloride source. Overall these studies support a mechanism where complex oligomeric catalysts both racemize the starting material and select one enantiomer for a highly enantioselective reaction. It is anticipated that this work will enable extension of copper-catalyzed asymmetric reactions and provide understanding on how to develop dynamic kinetic asymmetric transformations more broadly.

12.
Nature ; 517(7534): 351-5, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25592541

ABSTRACT

The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of ≥50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.


Subject(s)
Biological Products/chemical synthesis , Carbon/chemistry , Copper/chemistry , Pharmaceutical Preparations/chemical synthesis , Alkenes/chemistry , Alkylation , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Biological Products/chemistry , Catalysis , Isomerism , Kinetics , Leprosy/drug therapy , Organometallic Compounds/chemistry , Palladium/chemistry , Pharmaceutical Preparations/chemistry , para-Aminobenzoates/metabolism
13.
Chem Commun (Camb) ; 48(56): 7034-6, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22684052

ABSTRACT

Ni-catalyzed ketone formation through mild reductive coupling of a diverse set of unactivated alkyl bromides and iodides with particularly aryl acid anhydrides was successfully developed using zinc as the terminal reductant. These conditions also allow direct coupling of alkyl iodides with aryl acids in the presence of Boc(2)O and MgCl(2).


Subject(s)
Anhydrides/chemistry , Hydrocarbons, Halogenated/chemistry , Ketones/chemical synthesis , Nickel/chemistry , Catalysis , Ketones/chemistry , Molecular Structure , Oxidation-Reduction , Stereoisomerism
14.
Chemistry ; 18(3): 808-12, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22170740

ABSTRACT

Game of two electrophiles: Two partially positively charged sp(3) carbon atoms can be connected by using a catalytic Ni species in the presence of an environmentally benign Zn reductant, delivering allylated alkanes. This unprecedented approach allowed a variety of unactivated alkyl halides and substituted allylic carbonates to regioselectively afford E-alkenes in good to excellent yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...