Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
J Med Chem ; 67(12): 9869-9895, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38888047

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Targeting NLRP3 inflammasome, specifically its interaction with NEK7 via the LRR domain of NLRP3, is a promising therapeutic strategy. Our research aimed to disrupt this interaction by focusing on the LRR domain. Through virtual screening, we identified five compounds with potent anti-inflammatory effects and ideal LRR binding affinity. Lead compound C878-1943 underwent structural optimization, yielding pyridoimidazole derivatives with different anti-inflammatory activities. Compound I-19 from the initial series effectively inhibited caspase-1 and IL-1ß release in an adjuvant-induced arthritis (AIA) rat model, significantly reducing joint swelling and spleen/thymus indices. To further enhance potency and extend in vivo half-life, a second series including II-8 was developed, demonstrating superior efficacy and longer half-life. Both I-19 and II-8 bind to the LRR domain, inhibiting NLRP3 inflammasome activation. These findings introduce novel small molecule inhibitors targeting the LRR domain of NLRP3 protein and disrupt NLRP3-NEK7 interaction, offering a novel approach for RA treatment.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NIMA-Related Kinases/antagonists & inhibitors , NIMA-Related Kinases/metabolism , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Humans , Rats , Arthritis, Experimental/drug therapy , Drug Discovery , Structure-Activity Relationship , Male , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Molecular Docking Simulation , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/chemical synthesis , Antirheumatic Agents/therapeutic use
2.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Article in English | MEDLINE | ID: mdl-38849323

ABSTRACT

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Subject(s)
Antineoplastic Agents , Membrane Proteins , Neoplasms , Patents as Topic , Humans , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immunity, Innate/drug effects , Immunotherapy/methods
3.
Eur J Med Chem ; 274: 116532, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38805937

ABSTRACT

Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.


Subject(s)
Antineoplastic Agents , Enzyme Inhibitors , Histone-Lysine N-Methyltransferase , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Histones/metabolism , Molecular Structure , Animals
4.
Expert Opin Ther Pat ; 34(1-2): 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38441084

ABSTRACT

INTRODUCTION: The 90-kDa heat shock protein (HSP90) functions as a molecular chaperone, it assumes a significant role in diseases such as cancer, inflammation, neurodegeneration, and infection. Therefore, the research and development of HSP90 inhibitors have garnered considerable attention. AREAS COVERED: The primary references source for this review is patents obtained from SciFinder, encompassing patents on HSP90 inhibitors from the period of 2020 to 2023.This review includes a thorough analysis of their structural attributes, pharmacological properties, and potential clinical utilities. EXPERT OPINION: In the past few years, HSP90 inhibitors targeting ATP binding pocket are still predominate and one of them has been launched, besides, novel drug design strategies like C-terminal targeting, isoform selective inhibiting and bifunctional molecules are booming, aiming to improve the efficacy and safety. With expanded drug types and applications, HSP90 inhibitors may gradually becoming a sagacious option for treating various diseases.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Drug Design , HSP90 Heat-Shock Proteins/metabolism , Neoplasms/drug therapy , Patents as Topic
5.
Eur J Med Chem ; 269: 116270, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38490062

ABSTRACT

Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.


Subject(s)
Cullin Proteins , Ubiquitin-Protein Ligases , Humans , Cullin Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism
6.
Bioorg Med Chem ; 102: 117677, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38457911

ABSTRACT

Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma­b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.


Subject(s)
Lymphoma, B-Cell , Proto-Oncogene Proteins c-cbl , Humans , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Ubiquitin-Protein Ligases/metabolism , Immunotherapy
7.
Drug Discov Today ; 29(5): 103951, 2024 May.
Article in English | MEDLINE | ID: mdl-38514041

ABSTRACT

Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.


Subject(s)
Drug Discovery , Small Molecule Libraries , Transient Receptor Potential Channels , Humans , Animals , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/antagonists & inhibitors , Drug Discovery/methods , Small Molecule Libraries/pharmacology
8.
Eur J Med Chem ; 268: 116241, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38382391

ABSTRACT

Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.

9.
Eur J Med Chem ; 268: 116271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401187

ABSTRACT

Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression. Besides the extensive research on the bromodomain and extra-terminal (BET) domain family proteins, the non-BET proteins have gained increasing attention. Bromodomain containing protein 8 (BRD8), a reader of KAc and co-activator of nuclear receptors (NRs), plays a key role in various cancers. This review provides a comprehensive analysis of the structure, disease-related functions, and inhibitor development of BRD8. Opportunities and challenges for future studies targeting BRD8 in disease treatment are discussed.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Transcription Factors , Lysine , Protein Domains , Bromodomain Containing Proteins
10.
Future Med Chem ; 16(2): 125-138, 2024 01.
Article in English | MEDLINE | ID: mdl-38189168

ABSTRACT

Background: Specifically blocking HSP90-CDC37 interaction is emerging as a prospective strategy for cancer therapy. Aim: Applying a kinase pseudopeptide rationale to the discovery of HSP90-CDC37 protein-protein interaction (PPI) inhibitors. Methods: Pseudosubstrates were identified through sequence alignment and evaluated by biolayer interferometry assay, co-immunoprecipitation assay and antiproliferation assay. Results: TAT-DDO-59120 was identified to disrupt HSP90-CDC37 PPI through directly binding to HSP90, both extracellularly and intracellularly. In addition, the identified peptide showed ideal antiproliferative activity against the colorectal cancer cell HCT116 (IC50 = 12.82 µM). Conclusion: Compared with the traditional method of screening a large compound library to identify PPI inhibitors, this method is rapid and efficient with strong purpose, which provides a novel strategy for designing HSP90-CDC37 PPI inhibitors.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Chaperonins/chemistry , Chaperonins/metabolism , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Binding
11.
Cell Chem Biol ; 31(6): 1188-1202.e10, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38157852

ABSTRACT

Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.


Subject(s)
Inflammation , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Humans , Animals , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Male
12.
Eur J Med Chem ; 265: 116080, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38142510

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.


Subject(s)
Multiple Sclerosis , Transcription Factors , Rats , Mice , Animals , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Multiple Sclerosis/drug therapy , Protein Domains , Brain/metabolism , Cell Cycle Proteins/metabolism
13.
Eur J Med Chem ; 264: 116031, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101039

ABSTRACT

Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.


Subject(s)
Neoplasms , Phosphoprotein Phosphatases , Humans , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/therapeutic use , Protein Tyrosine Phosphatases , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Phosphorylation , Neoplasms/drug therapy , Proteolysis
14.
Molecules ; 28(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138431

ABSTRACT

At every juncture in history, the design and identification of new drugs pose significant challenges. To gain valuable insights for future drug development, we conducted a detailed analysis of New Molecular Entitiy (NME) approved by the Food and Drug Administration (FDA) from 2012 to 2022 and focused on the analysis of first-in-class (FIC) small-molecules from a perspective of a medicinal chemist. We compared the change of numbers between all the FDA-approved NMEs and FIC, which could be more visual to analyze the changing trend of FIC. To get a more visual change of molecular physical properties, we computed the annual average trends in molecular weight for FIC across various therapeutic fields. Furthermore, we consolidated essential information into three comprehensive databases, which covered the indications, canonical SMILES, structural formula, research and development (R&D) institutions, molecular weight, calculated LogP (CLogP), and route of administration on all the small-molecule pharmaceutical. Through the analysis of the database of 11 years of approvals, we forecast the development trend of NME approval in the future.


Subject(s)
Drug Approval , Drug Development , United States , Pharmaceutical Preparations , United States Food and Drug Administration , Databases, Factual
15.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37983486

ABSTRACT

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Ketoglutaric Acids , Dioxygenases/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , AlkB Homolog 5, RNA Demethylase/metabolism , Microtubule-Associated Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
16.
Eur J Med Chem ; 261: 115859, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37839344

ABSTRACT

Abnormal post-translational modification of microtubule-associated protein Tau (MAPT) is a prominent pathological feature in Alzheimer's disease (AD). Previous research has focused on designing small molecules to target Tau modification, aiming to restore microtubule stability and regulate Tau levels in vivo. However, progress has been hindered, and no effective Tau-targeted drugs have been successfully marketed, which urgently requires more strategies. Heat shock proteins (HSPs), especially Hsp90 and Hsp70, have been found to play a crucial role in Tau maturation and degradation. This review explores innovative approaches using small molecules that interact with the chaperone system to regulate Tau levels. We provide a comprehensive overview of the mechanisms involving HSPs and their co-chaperones in the Tau regulation cycle. Additionally, we analyze small molecules targeting these chaperone systems to modulate Tau function. By understanding the characteristics of the molecular chaperone system and its specific impact on Tau, we aim to provide a perspective that seeks to regulate Tau levels through the manipulation of the molecular chaperone system and ultimately develop effective treatments for AD.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Molecular Chaperones , Alzheimer Disease/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins , HSP70 Heat-Shock Proteins
17.
Curr Drug Targets ; 24(12): 959-980, 2023.
Article in English | MEDLINE | ID: mdl-37653633

ABSTRACT

Stimulator of interferon genes (STING) plays a vital role in the human innate immune system. Aberrant expression of STING has been proven to be associated with several diseases, such as STING-associated vasculopathy with onset in infancy, Aicardi-Goutieres syndrome, and systemic lupus erythematosus. Therefore, inhibition of the STING signaling pathway can also be expected to provide effective therapeutic strategies for treating specific inflammatory and autoimmune diseases. However, the development of STING inhibitors is still in its infancy. There is still a need for additional efforts toward the discovery of new skeletons and more potent lead compounds for STING inhibition to meet clinical demand. In this review, we provide a summary of STING inhibitors, classified by different structural skeletons, reported in patents published from 2019 to July 2022. In addition, we also focus on the STING inhibitors, representative structures, biological activity, and mechanisms of action.

18.
J Med Chem ; 66(16): 10934-10958, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37561645

ABSTRACT

Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Ligands , Fluorescence Polarization
19.
J Med Chem ; 66(14): 9325-9344, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37441735

ABSTRACT

Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.


Subject(s)
Chemistry, Pharmaceutical , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Drug Discovery , Oxidative Stress
20.
J Med Chem ; 66(13): 8725-8744, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37382379

ABSTRACT

Neuropathic pain (NP) is an intolerable pain syndrome that arises from continuous inflammation and excitability after nerve injury. Only a few NP therapeutics are currently available, and all of them do not provide adequate pain relief. Herein, we report the discovery of a selective and potent inhibitor of the bromodomain and extra-terminal (BET) proteins for reducing neuroinflammation and excitability to treat NP. Starting with the screening hit 1 from an in-house compound library, iterative optimization resulted in the potent BET inhibitor DDO-8926 with a unique binding mode and a novel chemical structure. DDO-8926 exhibits excellent BET selectivity and favorable drug-like properties. In mice with spared nerve injury, DDO-8926 significantly alleviated mechanical hypersensitivity by inhibiting pro-inflammatory cytokine expression and reducing excitability. Collectively, these results implicate that DDO-8926 is a promising agent for the treatment of NP.


Subject(s)
Drug Discovery , Neuralgia , Mice , Animals , Drug Discovery/methods , Protein Domains , Cytokines , Pyridines/pharmacology , Pyridines/therapeutic use , Neuralgia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...