Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 13(1): 12, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658614

ABSTRACT

BACKGROUND: Ischemic diseases represent a major global health care burden. Angiogenesis is critical in recovery of blood flow and repair of injured tissue in ischemic diseases. Ten-eleven translocation protein 2 (TET2), a member of DNA demethylases, is involved in many pathological processes. However, the role of TET2 in angiogenesis is still unrevealed. METHODS: TET2 was screened out from three DNA demethylases involved in 5-hydroxylmethylcytosine (5-hmC) regulation, including TET1, TET2 and TET3. Knockdown by small interfering RNAs and overexpression by adenovirus were used to evaluate the role of TET2 on the function of endothelial cells. The blood flow recovery and density of capillary were analyzed in the endothelial cells-specific TET2-deficient mice. RNA sequencing was used to identify the TET2-mediated mechanisms under hypoxia. Co-immunoprecipitation (Co-IP), chromatin immunoprecipitation-qPCR (ChIP-qPCR) and glucosylated hydroxymethyl-sensitive-qPCR (GluMS-qPCR) were further performed to reveal the interaction of TET2 and STAT3. RESULTS: TET2 was significantly downregulated in endothelial cells under hypoxia and led to a global decrease of 5-hmC level. TET2 knockdown aggravated the hypoxia-induced dysfunction of endothelial cells, while TET2 overexpression alleviated the hypoxia-induced dysfunction. Meanwhile, the deficiency of TET2 in endothelial cells impaired blood flow recovery and the density of capillary in the mouse model of hindlimb ischemia. Mechanistically, RNA sequencing indicated that the STAT3 signaling pathway was significantly inhibited by TET2 knockdown. Additionally, Co-IP, ChIP-qPCR and GluMS-qPCR further illustrated that STAT3 recruited and physically interacted with TET2 to activate STAT3 target genes. As expected, the effects of TET2 overexpression were completely suppressed by STAT3 silencing in vitro. CONCLUSIONS: Our study suggests that the deficiency of TET2 in endothelial cells impairs angiogenesis via suppression of the STAT3 signaling pathway. These findings give solid evidence for TET2 to be a therapeutic alternative for ischemic diseases.

2.
Sci Signal ; 15(757): eabn9009, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282910

ABSTRACT

Neural crest cells (NCCs) are multipotent stem cells that can differentiate into multiple cell types, including the osteoblasts and chondrocytes, and constitute most of the craniofacial skeleton. Here, we show through in vitro and in vivo studies that the transcriptional regulators Yap and Taz have redundant functions as key determinants of the specification and differentiation of NCCs into osteoblasts or chondrocytes. Primary and cultured NCCs deficient in Yap and Taz switched from osteogenesis to chondrogenesis, and NCC-specific deficiency for Yap and Taz resulted in bone loss and ectopic cartilage in mice. Yap bound to the regulatory elements of key genes that govern osteogenesis and chondrogenesis in NCCs and directly regulated the expression of these genes, some of which also contained binding sites for the TCF/LEF transcription factors that interact with the Wnt effector ß-catenin. During differentiation of NCCs in vitro and NCC-derived osteogenesis in vivo, Yap and Taz promoted the expression of osteogenic genes such as Runx2 and Sp7 but repressed the expression of chondrogenic genes such as Sox9 and Col2a1. Furthermore, Yap and Taz interacted with ß-catenin in NCCs to coordinately promote osteoblast differentiation and repress chondrogenesis. Together, our data indicate that Yap and Taz promote osteogenesis in NCCs and prevent chondrogenesis, partly through interactions with the Wnt-ß-catenin pathway.


Subject(s)
Chondrogenesis , Osteogenesis , Animals , Mice , beta Catenin/genetics , Cell Differentiation , Chondrogenesis/genetics , Core Binding Factor Alpha 1 Subunit , Neural Crest , Osteogenesis/genetics , TCF Transcription Factors , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
3.
Theranostics ; 11(9): 4483-4501, 2021.
Article in English | MEDLINE | ID: mdl-33754073

ABSTRACT

Angiogenesis is a critical step in repair of tissue injury. The pattern recognition receptors (PRRs) recognize pathogen and damage associated molecular patterns (DAMPs) during injury and achieve host defense directly. However, the role of NLR family CARD domain containing 5 (NLRC5), an important member of PPRs, beyond host defense in angiogenesis during tissue repair remains unknown. Methods:In vitro, western blot and real-time PCR (RT-PCR) were used to detect the expression of NLRC5 in endothelial cells (ECs). Immunofluorescence microscopy was used to reveal the subcellular location of NLRC5 in ECs. Cell proliferation, wound healing, tube formation assays of ECs were performed to study the role of NLRC5 in angiogenesis. By using Tie2Cre-NLRC5flox/flox mice and bone marrow transplantation studies, we defined an EC-specific role for NLRC5 in angiogenesis. Mechanistically, co-immunoprecipitation studies and RNA sequencing indicated that signal transducer and activator of transcription 3 (STAT3) was the target of NLRC5 in the nucleus. And Co-IP was used to verify the specific domain of NLRC5 binding with STAT3. ChIP assay determined the genes regulated by interaction of STAT3 and NLRC5. Results: Knockdown of NLRC5 in vitro or in vivo inhibited pathological angiogenesis, but had no effect on physiological angiogenesis. NLRC5 was also identified to bind to STAT3 in the nucleus required the integrated death-domain and nucleotide-binding domain (DD+NACHT domain) of NLRC5. And the interaction of STAT3 and NLRC5 could enhance the transcription of angiopoietin-2 (Ang2) and cyclin D1 (CCND1) to participate in angiogenesis. Conclusions: In the ischemic microenvironment, NLRC5 protein accumulates in the nucleus of ECs and enhances STAT3 transcriptional activity for angiogenesis. These findings establish NLRC5 as a novel modulator of VEGFA signaling, providing a new target for angiogenic therapy to foster tissue regeneration.


Subject(s)
Endothelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neovascularization, Pathologic/metabolism , STAT3 Transcription Factor/metabolism , Angiopoietin-2/metabolism , Animals , Cell Line , Cell Proliferation/physiology , Cyclin D1/metabolism , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Signal Transduction/physiology , THP-1 Cells , Transcription, Genetic/physiology
4.
Gene ; 678: 137-142, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30096454

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and adjuvant targeted therapy has shown great benefits for the NSCLC patients with specific genomic mutations. Alectinib, a selective anaplastic lymphoma kinase (ALK) inhibitor, has been clinically used for the NSCLC patients with ALK-rearrangement, however, irreversible therapeutic resistance for the patients receiving alectinib treatment frequently occurs. Here we show that neuromedin U (NMU) may confer the alectinib resistance in NSCLC via multiple mechanisms based on the integrative bioinformatics analyses. Through employing the bioinformatics analyses of three microarray datasets, NMU, overexpressed in both NSCLC tissues and alectinib-resistant NSCLC cells, was initially identified as potential candidate for causing alectinib resistance in NSCLC. The resistance function of NMU in NSCLC was validated by performing protein/gene interactions and biological process annotation analyses, and further validated by analyzing the transcription factors targeting NMU mRNA. Collectively, these results indicated that NMU may confer alectinib resistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Computational Biology/methods , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Neuropeptides/genetics , Up-Regulation , Carbazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Databases, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Lung Neoplasms/drug therapy , Neuropeptides/metabolism , Oligonucleotide Array Sequence Analysis/methods , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...