Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
2.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569319

ABSTRACT

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Subject(s)
Fabaceae , Greenhouse Gases , Vegetables/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Nitrates , Carbon , Soil , Methane/analysis , Nitrogen/metabolism , Carbon Dioxide/analysis , Agriculture
3.
Front Biosci (Landmark Ed) ; 29(2): 63, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38420816

ABSTRACT

BACKGROUND: Largemouth bass (Micropterus Salmoides) is an economically important fish species in China. Most research has focused on its growth, disease resistance, and nutrition improvement. However, the sex-determining genes in largemouth bass are still unclear. The transforming growth factor-beta (TGF-ß) gene family, including amh, amhr2 and gsdf, plays an important role in the sex determination and differentiation of various fishes. These genes are potentially involved in sex determination in largemouth bass. METHODS: We performed a systematic analysis of 5 sex-related genes (amh, amhr2, gsdf, cyp19a1, foxl2) in largemouth bass using sequence alignment, collinearity analysis, transcriptome, and quantitative real-time polymerase chain reaction (qRT-PCR). This included a detailed assessment of their sequences, gene structures, evolutionary traits, and gene transcription patterns in various tissues including gonads, and at different developmental stages. RESULTS: Comparative genomics revealed that the 5 sex-related genes were highly conserved in various fish genomes. These genes did not replicate, mutate or lose in largemouth bass. However, some were duplicated (amh, amhr2 and gsdf), mutated (gsdf) or lost (amhr2) in other fishes. Some genes (e.g., gsdf) showed significant differences in genomic sequence between males and females, which may contribute to sex determination and sex differentiation in these fishes. qRT-PCR was applied to quantify transcription profiling of the 5 genes during gonadal development and in the adult largemouth bass. Interestingly, amh, amhr2 and gsdf were predominantly expressed in the testis, while cyp19a1 and foxl2 were mainly transcribed in the ovary. All 5 sex-related genes were differentially expressed in the testes and ovaries from the 56th day post-fertilization (dpf). We therefore speculate that male/female differentiation in the largemouth bass may begin at this critical time-point. Examination of the transcriptome data also allowed us to screen out several more sex-related candidate genes. CONCLUSIONS: Our results provide a valuable genetic resource for investigating the physiological functions of these 5 sex-related genes in sex determination and gonadal differentiation, as well as in the control of gonad stability in adult largemouth bass.


Subject(s)
Bass , Animals , Female , Male , Bass/genetics , Sequence Alignment , Testis , Ovary , Transcriptome
4.
BMC Pregnancy Childbirth ; 24(1): 151, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383385

ABSTRACT

BACKGROUND: Cesarean scar pregnancy (CSP) is a long-term complication of cesarean section characterized by the localization of a subsequent gestational sac within the scar area or niche developed as a result of a previous cesarean section. Its incidence has increased substantially because of the high global cesarean section rate in recent decades. Several surgical and drug treatments exist for this condition; however, there is currently no optimal treatment. This study compared the effectiveness of direct hysteroscopic removal of the gestational tissue and hysteroscopy combined with vacuum suction for the treatment of CSP. METHODS: From 2017 to 2023, 521 patients were diagnosed with CSP at our hospital. Of these patients, 45 underwent hysteroscopy. Among them, 28 underwent direct hysteroscopic removal (hysteroscopic removal group) and 17 underwent hysteroscopy combined with vacuum suction (hysteroscopic suction group). The clinical characteristics and outcomes of the hysteroscopic removal group and hysteroscopic suction group were analyzed. RESULTS: Among the 45 patients, the amount of bleeding and hospitalization cost were significantly higher in the hysteroscopic removal group than in the hysteroscopic suction group (33.8 mL vs. 9.9 mL, P < 0.001; and 8744.0 yuan vs. 5473.8 yuan, P < 0.001; respectively). The operation time and duration of hospitalization were significantly longer in the hysteroscopic removal group than in the hysteroscopic suction group (61.4 min vs. 28.2 min, P < 0.001; and 3.8 days vs. 2.4 days, P = 0.026; respectively). Three patients in the hysteroscopic removal group had uterine perforation and received laparoscopic repair during operation. No complications occurred in the hysteroscopic suction group. One patient in the hysteroscopic removal group received ultrasound-guided suction curettage due to postoperative moderate vaginal bleeding, and one patient in the hysteroscopic suction group received ultrasound-guided suction curettage due to postoperative gestational residue and elevated serum beta-human chorionic gonadotropin levels. Reproductive function was preserved in all patients. CONCLUSIONS: Hysteroscopy is an effective method for treating CSP. Compared with direct hysteroscopic removal, hysteroscopy combined with vacuum suction is more suitable for CSP. However, multicenter prospective studies with large sample sizes are required for verification of these findings.


Subject(s)
Hysteroscopy , Pregnancy, Ectopic , Pregnancy , Humans , Female , Hysteroscopy/adverse effects , Cesarean Section/adverse effects , Cicatrix/surgery , Cicatrix/complications , Retrospective Studies , Prospective Studies , Pregnancy, Ectopic/etiology , Pregnancy, Ectopic/surgery , Postoperative Hemorrhage , Treatment Outcome
5.
Environ Int ; 184: 108469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324928

ABSTRACT

Biochar promotes microbial metabolic activities and reduces N2O on aerobic composting. However, the effects of magnetic biochar (MBC) on the microbial succession and N2O emissions during pig manure composting remain unclear. Herein, a 42-day composting experiment was conducted with five treatment regimes: pig manure without biochar (CK), 5 % pig manure-based biochar (5 % PBC), 2 % MBC (2 % MBC), 5 % MBC (5 % MBC) and 7.5 % MBC (7.5 % MBC)), to clarify the variation in functional microorganisms and genes associated with nitrogen and direct interspecies electron transfer via metagenomics. Fourier-transform infrared spectroscopy showed that MBC possessed more stable aromatic structures than pig manure-based biochar (PBC), indicating its greater potential for nitrous oxide reduction. MBC treatments were more effective in composting organic matter and improving the carbon/nitrogen ratio than PBC. The microbial composition during composting varied significantly, with the dominant phyla shifting from Firmicutes to Proteobacteria, Actinobacteria, and Bacteroidota. Network and hierarchical clustering analyses showed that the MBC treatment enhanced the interactions of dominant microbes (Proteobacteria and Bacteroidota) and accelerated the composting process. The biochar addition accelerated assimilatory nitrate reduction and slowed dissimilatory nitrate reduction and denitrification. The Mantel test demonstrated that magnetic biochar potentially helped regulate composting nutrients and affected functional nitrogen genes. These findings shed light on the role of MBC in mitigating greenhouse gas emissions during aerobic composting.


Subject(s)
Composting , Manure , Animals , Swine , Manure/microbiology , Nitrates , Soil , Charcoal/metabolism , Nitrogen/analysis , Magnetic Phenomena
6.
J Adv Res ; 58: 93-104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37220853

ABSTRACT

INTRODUCTION: Mudskippers are a large group of amphibious fishes that have developed many morphological and physiological capacities to live on land. Genomics comparisons of chromosome-level genome assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus magnuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land evolution and adaptation. METHODS: Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome, downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons of several representative gene families among the three amphibious mudskippers and some other teleosts were also performed to find some molecular clues for terrestrial adaptation. RESULTS: We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromosome analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphoprotein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalkylamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove a step-by-step evolution for the mudskippers' water-to-land adaptation. CONCLUSION: These high-quality mudskipper genome assemblies will become valuable genetic resources for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.


Subject(s)
Perciformes , Water , Animals , Genomics , Fishes/genetics , Perciformes/genetics , Chromosomes
7.
Biomol Biomed ; 24(1): 30-39, 2024 01 03.
Article in English | MEDLINE | ID: mdl-37658719

ABSTRACT

The present study systematically assessed alterations in thiol-disulfide homeostasis among women with preeclampsia (PE) through meta-analysis. This was conducted as such changes are believed to be associated with the oxidative stress underlying this condition. A comprehensive search of Medline, Web of Science, and Embase databases was conducted from their inception until 22 March 2023, to identify studies comparing levels of native thiol, total thiol, and disulfide between pregnant women with PE and those without PE. Results were pooled using a random-effects model to account for study heterogeneity. The analysis included a total of 631 women diagnosed with PE and 668 healthy pregnant women, encompassing 13 case-control studies and 1 prospective study. Pooled outcomes revealed that women with PE had significantly lower blood levels of native thiol, (mean difference [MD] -51.42 umol/L; 95% confidence interval [CI] -79.75 to -23.10 umol/L; P < 0.001; I2 = 0% and total thiol (MD -65.56 umol/L; 95% CI -104.97 to -26.15 umol/L; P = 0.001; I2 = 0%) compared to the control group. In contrast, no significant difference was observed in blood disulfide levels between the two groups (MD -1.10 umol/L; 95% CI -4.41 to -2.21 umol/L; P = 0.51; I2 = 0%). Subgroup analyses indicated that the results were consistent across studies matched by gestational age and body mass index, as well as those with varying quality scores (P for subgroup differences all > 0.05). In conclusion, women with PE are associated with significantly reduced blood levels of native and total thiols but show no change in blood disulfide levels, suggesting a state of reduced antioxidants in PE.


Subject(s)
Pre-Eclampsia , Humans , Female , Pregnancy , Disulfides , Sulfhydryl Compounds , Prospective Studies , Homeostasis
8.
Appl Microbiol Biotechnol ; 107(9): 3009-3019, 2023 May.
Article in English | MEDLINE | ID: mdl-36964197

ABSTRACT

Vibrio natriegens has massive biotechnological potential owing to its fast growth rate. However, this bacterium rapidly loses its culturability during low-temperature preservation (LTP), the reason for which is still unknown. To reveal the metabolic responses of V. natriegens during LTP, we analyzed and compared the transcriptome before and after 8 days of preservation at 4 or 25 °C (room-temperature preservation (RTP)) in liquid culture medium. Most genes exhibited significant transcriptional responses to LTP. Using gene set enrichment analysis, we compared the transcriptional responses of different V. natriegens Gene Ontology (GO) sets during LTP or RTP. The enrichment of the GO set "SOS response" during LTP, but not RTP, indicated the occurrence of DNA damage during LTP. The GO set "respiratory electron transport chain" was suppressed during LTP and RTP. Although the GO set "response to oxidative stress" was not significantly altered, we observed an increase in reactive oxygen species (ROS) during LTP, suggesting a relationship between ROS and cold-induced loss of culturability (CILC) in V. natriegens. The faster loss of culturability and accumulation of ROS in 20 mL compared to 100 mL of liquid culture medium further suggested a relationship between CILC and oxygen availability. Furthermore, we showed that the deletion of Na+-translocating NADH-ubiquinone oxidoreductase, but not type-II NADH dehydrogenase, accelerated CILC and increased intracellular ROS levels in V. natriegens. These findings will help to understand the cause of CILC which may lead to improving the stability of V. natriegens at low temperatures.


Subject(s)
Transcriptome , Vibrio , Reactive Oxygen Species/metabolism , Vibrio/genetics
9.
Mol Ecol Resour ; 23(4): 920-932, 2023 May.
Article in English | MEDLINE | ID: mdl-36631404

ABSTRACT

Most grouper species are functional protogynous hermaphrodites, but the genetic basis and the molecular mechanisms underlying the regulation of this unique reproductive strategy remain enigmatic. In this study, we report a high-quality chromosome-level genome assembly of the representative orange-spotted grouper (Epinephelus coioides). No duplication or deletion of sex differentiation-related genes was found in the genome, suggesting that sex development in this grouper may be related to changes in regulatory sequences or environmental factors. Transcriptomic analyses showed that aromatase and retinoic acid are probably critical to promoting ovarian fate determination, and follicle-stimulating hormone triggers the female-to-male sex change. Socially controlled sex-change studies revealed that, in sex-changing fish, the brain's response to the social environment may be mediated by activation of the phototransduction cascade and the melatonin synthesis pathway. In summary, our genomic and experimental results provide novel insights into the molecular mechanisms of sex differentiation and sex change in the protogynous groupers.


Subject(s)
Bass , Sex Differentiation , Animals , Female , Male , Sex Differentiation/genetics , Bass/genetics , Bass/metabolism , Gonads/metabolism , Sex Determination Processes/genetics , Gene Expression Profiling , Fish Proteins/genetics
10.
J Hazard Mater ; 446: 130635, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36584648

ABSTRACT

Bioaccumulation and adsorption are efficient methods for removing heavy metal ions (HMIs) from aqueous environments. However, methods to quantifiably characterize the removal selectivity for co-existing HMIs are limited. In this study, we applied Shapley additive explanations (SHAP) following extreme gradient boosting (XGBoost) modeling, to generate SHAP values. We used these values to create an affinity interference index (AII) that quantitatively represented the interference between metal ions in a multi-metal bioaccumulation system. The selectivity for simultaneous bioaccumulation of Pb2+, Cu2+, and Zn2+ by living Bacillus subtilis biomass was then characterized as a proof of concept. The AII indicated that the bioaccumulation of Zn2+ was more strongly inhibited by Pb2+/Cu2+ (AII = 1) than that of Pb2+/Cu2+ by Zn2+. Moreover, the presence of Zn2+ promoted the bioaccumulation of Pb2+ (AII = 0.39), which was confirmed in further experiments where the bioaccumulation of Pb2+ (300 µM) was increased by 38% with Zn2+ (300 µM). This study demonstrated that the combination of XGBoost and SHAP is effective in the quantifiable characterization of the antagonistic and synergistic effects in a multi-metal simultaneous bioaccumulation system. This method could also be generalized to similar tasks for analyzing the selectivity effects in a multi-component system.


Subject(s)
Bacillus subtilis , Metals, Heavy , Lead , Bioaccumulation , Biomass , Zinc
11.
Zool Res ; 44(1): 78-89, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36349358

ABSTRACT

Largemouth bass ( Micropterus salmoides) is an economically important fish species in North America, Europe, and China. Various genetic improvement programs and domestication processes have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In this study, we sequenced 149 largemouth bass fish, including protospecies (imported from the US) and improved breeds (four domestic breeding populations from China). We detected genomic regions harboring certain genes associated with improved traits, which may be useful molecular markers for practical domestication, breeding, and selection. Subsequent analyses of genetic diversity and population structure revealed that the improved breeds have undergone more rigorous genetic changes. Through selective signal analysis, we identified hundreds of putative selective sweep regions in each largemouth bass line. Interestingly, we predicted 103 putative candidate genes potentially subjected to selection, including several associated with growth (p sst1 and grb10), early development ( klf9, sp4, and sp8), and immune traits ( pkn2, sept2, bcl6, and ripk2). These candidate genes represent potential genomic landmarks that could be used to improve important traits of biological and commercial interest. In summary, this study provides a genome-wide map of genetic variations and selection footprints in largemouth bass, which may benefit genetic studies and accelerate genetic improvement of this economically important fish.


Subject(s)
Bass , Animals , Bass/genetics , Sequence Analysis, DNA/veterinary , Genome , North America , China
12.
Front Genet ; 13: 1020017, 2022.
Article in English | MEDLINE | ID: mdl-36406129

ABSTRACT

The economically important Southern bluefin tuna (Thunnus maccoyii) is a world-famous fast-swimming fish, but its genomic information is limited. Here, we performed whole genome sequencing and assembled a draft genome for Southern bluefin tuna, aiming to generate useful genetic data for comparative functional prediction. The final genome assembly is 806.54 Mb, with scaffold and contig N50 values of 3.31 Mb and 67.38 kb, respectively. Genome completeness was evaluated to be 95.8%. The assembled genome contained 23,403 protein-coding genes and 236.1 Mb of repeat sequences (accounting for 29.27% of the entire assembly). Comparative genomics analyses of this fast-swimming tuna revealed that it had more than twice as many hemoglobin genes (18) as other relatively slow-moving fishes (such as seahorse, sunfish, and tongue sole). These hemoglobin genes are mainly localized in two big clusters (termed as "MNË® and "LAË® respectively), which is consistent with other reported fishes. However, Thr39 of beta-hemoglobin in the MN cluster, conserved in other fishes, was mutated as cysteine in tunas including the Southern bluefin tuna. Since hemoglobins are reported to transport oxygen efficiently for aerobic respiration, our genomic data suggest that both high copy numbers of hemoglobin genes and an adjusted function of the beta-hemoglobin may support the fast-swimming activity of tunas. In summary, we produced a primary genome assembly and predicted hemoglobin-related roles for the fast-swimming Southern bluefin tuna.

13.
Gigascience ; 112022 09 15.
Article in English | MEDLINE | ID: mdl-36106701

ABSTRACT

BACKGROUND: Asian arowana, Scleropages formosus, is one of the most expensive aquarium fish species worldwide. Its sex, however, cannot be distinguished clearly at any development stage, which impedes captive breeding and species protection for this endangered aquarium fish. RESULTS: To discover molecular clues to the sex of Asian arowana, we sequenced 26.5 Gb of PacBio HiFi reads and 179.2 Gb of Hi-C reads for 1 male fish and also sequenced 106.5 Gb of Illumina reads, 36.0 Gb of PacBio Sequel reads, and 80.7 Gb of Hi-C reads for 1 female individual. The final male and female genome assemblies were approximately 756.8 Mb and 781.5 Mb in length and contained 25,262 and 25,328 protein-coding genes, respectively. We also resequenced the genomes of 15 male and 15 female individuals with approximately 722.1 Gb of Illumina reads. A genome-wide association study identified several potentially divergent regions between male and female individuals. In these regions, cd48 and cfap52 could be candidate genes for sex determination of Asian arowana. We also found some structural variations in few chromosomes between male and female individuals. CONCLUSION: We provided an improved reference genome assembly of female arowana and generated the first sequenced genome of 1 male individual. These valuable genetic resources and resequencing data may improve global aquarium fish research.


Subject(s)
Genome-Wide Association Study , Genome , Animals , Chromosomes , Female , Fishes/genetics , Genomics , Male
14.
Sci Data ; 9(1): 408, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840598

ABSTRACT

Endemic to Australia, jade perch (Scortum barcoo) is a highly profitable freshwater bass species. It has extraordinarily high levels of omega-3 polyunsaturated fatty acids (PUFAs), which detailed genes involved in are largely unclear. Meanwhile, there were four chromosome-level bass species have been previous sequenced, while the bass ancestor genome karyotypes have not been estimated. Therefore, we sequenced, assembled and annotated a genome of jade perch to characterize the detailed genes for biosynthesis of omega-3 PUFAs and to deduce the bass ancestor genome karyotypes. We constructed a chromosome-level genome assembly with 24 pairs of chromosomes, 657.7 Mb in total length, and the contig and the scaffold N50 of 4.8 Mb and 28.6 Mb respectively. We also identified repetitive elements (accounting for 19.7% of the genome assembly) and predicted 26,905 protein-coding genes. Meanwhile, we performed genome-wide localization and characterization of several important genes encoding some key enzymes in the biosynthesis pathway of PUFAs. These genes may contribute to the high concentration of omega-3 in jade perch. Moreover, we conducted a series of comparative genomic analyses among four representative bass species at a chromosome level, resulting in a series of sequences of a deductive bass ancestor genome.


Subject(s)
Chromosomes , Genome , Perches , Animals , Base Sequence , Perches/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid
15.
Front Genet ; 13: 820442, 2022.
Article in English | MEDLINE | ID: mdl-35664299

ABSTRACT

As an important hormone, melatonin participates in endocrine regulation of diverse functions in vertebrates. Its biosynthesis is catalyzed by four cascaded enzymes, among them, arylalkylamine N-acetyltransferase (AANAT) is the most critical one. Although only single aanat gene has been identified in most groups of vertebrates, researchers including us have determined that fish have the most diverse of aanat genes (aanat1a, aanat1b, and aanat2), playing various potential roles such as seasonal migration, amphibious aerial vision, and cave or deep-sea adaptation. With the rapid development of genome and transcriptome sequencing, more and more putative sequences of fish aanat genes are going to be available. Related phylogeny and functional investigations will enrich our understanding of AANAT functions in various fish species.

16.
Environ Res ; 213: 113706, 2022 10.
Article in English | MEDLINE | ID: mdl-35714686

ABSTRACT

Soil microbial communities play a key role in the biochemical processes and nutrient cycles of the soil ecosystem and their byproducts, including greenhouse gases (GHGs). Organic fertilization influences bacterial soil biodiversity and is an essential emission source of GHGs in paddy soil ecosystems. However, the impact of organic fertilization on the functional microorganisms associated with the GHGs methane and nitrous oxide remains unknown. We conducted paddy soil field experiments under three different treatments (no fertilization, base fertilization, and organic fertilization) to investigate the contribution of organic fertilization to soil nutrients and the functional microorganisms associated with GHG emissions. We found that organic fertilization effectively increased the soil organic matter (P < 0.001), soil organic carbon (P < 0.001), and total nitrogen (P < 0.05) as well as the richness (operational taxonomic units and abundance-based coverage estimators) of the methanogenic communities. Correlation analyses showed that methanogenic communities that were present in abundance were more vulnerable to perturbations in soil properties compared to nitrifying bacterial communities. Partial least squares path model analyses elucidated that organic fertilization directly affected both methanogenic communities and nitrifying bacterial communities (P < 0.05), thereby accelerating methane emissions. Strong co-occurrence networks were observed within the soil-dominant phyla Acidobacteria, Bacteroidetes, and Proteobacteria. Our findings highlight the impact of organic fertilization on soil nutrients and functional microorganisms and guide mitigating GHG emissions from paddy soil agroecosystems.


Subject(s)
Greenhouse Gases , Microbiota , Oryza , Agriculture , Bacteria , Carbon/analysis , Carbon Dioxide/analysis , Fertilizers/analysis , Methane/analysis , Nitrous Oxide , Soil/chemistry
17.
Sci Total Environ ; 832: 154975, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35378178

ABSTRACT

Microplastics (MPs) are widespread anthropogenic pollutants that contaminate the terrestrial environment and serve as vectors of other contaminants. They trigger toxic effects during their migration and transmission, affecting the soil ecosystem and eventually presenting a serious threat to human health via the food chain. However, comprehensive studies on the distribution of MPs in soil and their correlation with human activities and terrestrial ecosystems are still lacking. In this study, we detected a significant difference in the MP size (both for the size <1 mm (P < 0.01) and the size 1-2 mm (P < 0.05)) in China and other countries based on bibliometric and meta-analysis. Principal component analysis revealed regional variations in MP distribution. The correlation analysis between MP characteristics and anthropogenic activities in China further revealed that industrial production was linked to polypropylene microplastics (PP-MPs) abundance (P < 0.01). We also discussed the interaction between soil MPs and ecosystems, such as soil microbial community, since the transportation of MPs was associated with its distribution and environmental factors in the soil. Linear regression analysis further showed that environmental variables, such as culture temperature, were negatively related to MPs' degradation efficiency by the fungi (P < 0.05). This study aims to evaluate the distribution, transfer, and impact of MPs, and their interaction with the soil ecosystem and provides information on the prevention and management of MP pollution in the terrestrial environment.


Subject(s)
Microbiota , Microplastics , Anthropogenic Effects , Ecosystem , Humans , Plastics , Soil
18.
Front Genet ; 12: 730255, 2021.
Article in English | MEDLINE | ID: mdl-34659355

ABSTRACT

Spiny head croaker (Collichthys lucidus), belonging to the family Sciaenidae, is a small economic fish with a main distribution in the coastal waters of Northwestern Pacific. Here, we constructed a nonredundant chromosome-level genome assembly of spiny head croaker and also made genome-wide investigations on genome evolution and gene families related to otolith development. A primary genome assembly of 811.23 Mb, with a contig N50 of 74.92 kb, was generated by a combination of 49.12-Gb Illumina clean reads and 35.24 Gb of PacBio long reads. Contigs of this draft assembly were further anchored into chromosomes by integration with additional 185.33-Gb Hi-C data, resulting in a high-quality chromosome-level genome assembly of 817.24 Mb, with an improved scaffold N50 of 26.58 Mb. Based on our phylogenetic analysis, we observed that C. lucidus is much closer to Larimichthys crocea than Miichthys miiuy. We also predicted that many gene families were significantly expanded (p-value <0.05) in spiny head croaker; among them, some are associated with "calcium signaling pathway" and potential "inner ear functions." In addition, we identified some otolith-related genes (such as otol1a that encodes Otolin-1a) with critical deletions or mutations, suggesting possible molecular mechanisms for well-developed otoliths in the family Sciaenidae.

19.
Front Genet ; 12: 736500, 2021.
Article in English | MEDLINE | ID: mdl-34675964

ABSTRACT

An adult Sinocyclocheilus maitianheensis, a surface-dwelling golden-line barbel fish, was collected from Maitian river (Kunming City, Yunnan Province, China) for whole-genome sequencing, assembly, and annotation. We obtained a genome assembly of 1.7 Gb with a scaffold N50 of 1.4 Mb and a contig N50 of 24.7 kb. A total of 39,977 protein-coding genes were annotated. Based on a comparative phylogenetic analysis of five Sinocyclocheilus species and other five representative vertebrates with published genome sequences, we found that S. maitianheensis is close to Sinocyclocheilus anophthalmus (a cave-restricted species with similar locality). Moreover, the assembled genomes of S. maitianheensis and other four Sinocyclocheilus counterparts were used for a fourfold degenerative third-codon transversion (4dTv) analysis. The recent whole-genome duplication (WGD) event was therefore estimated to occur about 18.1 million years ago. Our results also revealed a decreased tendency of copy number in many important genes related to immunity and apoptosis in cave-restricted Sinocyclocheilus species. In summary, we report the first genome assembly of S. maitianheensis, which provides a valuable genetic resource for comparative studies on cavefish biology, species protection, and practical aquaculture of this potentially economical fish.

20.
Genomics ; 113(5): 3349-3356, 2021 09.
Article in English | MEDLINE | ID: mdl-34343676

ABSTRACT

Striped catfish (Pangasianodon hypophthalmus), belonging to the Pangasiidae family, has become an economically important fish with wide cultivation in Southeast Asia. Owing to the high-fat trait, it is always considered as an oily fish. In our present study, a high-quality genome assembly of the striped catfish was generated by integration of Illumina short reads, Nanopore long reads and Hi-C data. A 731.7-Mb genome assembly was finally obtained, with a contig N50 of 3.5 Mb, a scaffold N50 of 29.5 Mb, and anchoring of 98.46% of the assembly onto 30 pseudochromosomes. The genome contained 36.9% repeat sequences, and a total 18,895 protein-coding genes were predicted. Interestingly, we identified a tandem triplication of fatty acid binding protein 1 gene (fabp1; thereby named as fabp1-1, fabp1-2 and fabp1-3 respectively), which may be related to the high fat content in striped catfish. Meanwhile, the FABP1-2 and -3 isoforms differed from FABP1-1 by several missense mutations including R126T, which may affect the fatty acid binding properties. In summary, we report a high-quality chromosome-level genome assembly of the striped catfish, which provides a valuable genetic resource for biomedical studies on the high-fat trait, and lays a solid foundation for practical aquaculture and molecular breeding of this international teleost species.


Subject(s)
Catfishes , Animals , Catfishes/genetics , Chromosomes/genetics , Genome , High-Throughput Nucleotide Sequencing , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL