Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0240285, 2020.
Article in English | MEDLINE | ID: mdl-33057355

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) has swept the whole world with high mortality. Since droplet transmission is the main route of transmission, wearing a mask serves as a crucial preventive measure. However, the virus has spread quite quickly, causing severe mask shortage. Finding alternative materials for homemade masks while ensuring the significant performance indicators will help alleviate the shortage of masks. Referring to the national standard for the "Surgical Mask" of China, 17 materials to be selected for homemade masks were tested in four key indicators: pressure difference, particle filtration efficiency, bacterial filtration efficiency and resistance to surface wetting. Eleven single-layer materials met the standard of pressure difference (≤49 Pa), of which 3 met the standard of resistance to surface wetting (≥3), 1 met the standard of particle filtration efficiency (≥30%), but none met the standard of bacterial filtration efficiency (≥95%). Based on the testing results of single-layer materials, fifteen combinations of paired materials were tested. The results showed that three double-layer materials including double-layer medical non-woven fabric, medical non-woven fabric plus non-woven shopping bag, and medical non-woven fabric plus granular tea towel could meet all the standards of pressure difference, particle filtration efficiency, and resistance to surface wetting, and were close to the standard of the bacterial filtration efficiency. In conclusion, if resources are severely lacking and medical masks cannot be obtained, homemade masks using available materials, based on the results of this study, can minimize the chance of infection to the maximum extent.


Subject(s)
Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Textiles/standards , COVID-19 , Coronavirus Infections/transmission , Filtration/standards , Humans , Masks/adverse effects , Personal Protective Equipment/adverse effects , Pneumonia, Viral/transmission , Textiles/adverse effects , Textiles/classification
2.
Bioconjug Chem ; 31(6): 1641-1650, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32426977

ABSTRACT

Bioinspired by the morphology of osteoclast-resorbed bone surfaces, we prepared a calcium-doped titanium phosphate (Ca-TiP) coating, which consists of a nanofibrous network, on titanium (Ti) substrate via a simple two-step hydrothermal method, trying to mimic natural bone compositionally and microstructurally. The in vitro studies show that the Ca-TiP coating with synergistic features of nanofibrous biomimetic topography and surface chemistry could elicit intensively osteogenic behavior and responses including enhanced cell adhesion, spreading, and proliferation as well as alkaline phosphatase (ALP) activity and up-regulated expression of bone-related genes, which inevitably benefit the formation of new bone and the quality of osseointegration. When the two control groups are compared in vivo, the significantly improved new bone formation in the early stage and the much stronger interfacial bonding with the surrounding bone for Ca-TiP coating suggest that Ca-TiP coating modified Ti implants hold great potential for orthopedic and dental applications.


Subject(s)
Calcium/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nanofibers/chemistry , Osseointegration/drug effects , Titanium/chemistry , Alkaline Phosphatase/metabolism , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation/drug effects , Male , Rats , Rats, Sprague-Dawley
3.
Mol Genet Genomic Med ; 8(6): e1236, 2020 06.
Article in English | MEDLINE | ID: mdl-32281281

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by a CGG repeat expansion in the 5' untranslated region of the FMR1 gene. When the number of repeats exceeds 200, the gene becomes hypermethylated and is transcriptionally silenced, resulting in FXS. Other allelic forms of the gene that are studied because of their instability or phenotypic consequence include intermediate alleles (45-54 CGG repeats) and premutation alleles (55-200 repeats). Normal alleles are classified as having <45 CGG repeats. Population screening studies have been conducted among American and Australian populations; however, large population-based studies have not been completed in China. METHODS AND RESULTS: In this work we present FXS screening results from 10,145 women of childbearing age from China. We first created and tested a standard panel that was comprised of normal, intermediate, premutation, and full mutation samples, and we performed the screening after confirming the consistency of genotyping results among laboratories. CONCLUSION: Based on our findings, we have determined the intermediate and premutation carrier prevalence of 1/130 and 1/634, respectively, among Chinese women.


Subject(s)
Alleles , Fragile X Syndrome/genetics , Noninvasive Prenatal Testing/standards , Adult , China , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Genetic Counseling/methods , Genetic Counseling/standards , Humans , Male , Noninvasive Prenatal Testing/methods , Pregnancy , Reference Standards , Trinucleotide Repeat Expansion
SELECTION OF CITATIONS
SEARCH DETAIL
...