Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 29: 36-49, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37621772

ABSTRACT

Neural regeneration after spinal cord injury (SCI) closely relates to the microvascular endothelial cell (MEC)-mediated neurovascular unit formation. However, the effects of central nerve system-derived MECs on neovascularization and neurogenesis, and potential signaling involved therein, are unclear. Here, we established a primary spinal cord-derived MECs (SCMECs) isolation with high cell yield and purity to describe the differences with brain-derived MECs (BMECs) and their therapeutic effects on SCI. Transcriptomics and proteomics revealed differentially expressed genes and proteins in SCMECs were involved in angiogenesis, immunity, metabolism, and cell adhesion molecular signaling was the only signaling pathway enriched of top 10 in differentially expressed genes and proteins KEGG analysis. SCMECs and BMECs could be induced angiogenesis by different stiffness stimulation of PEG hydrogels with elastic modulus 50-1650 Pa for SCMECs and 50-300 Pa for BMECs, respectively. Moreover, SCMECs and BMECs promoted spinal cord or brain-derived NSC (SNSC/BNSC) proliferation, migration, and differentiation at different levels. At certain dose, SCMECs in combination with the NeuroRegen scaffold, showed higher effectiveness in the promotion of vascular reconstruction. The potential underlying mechanism of this phenomenon may through VEGF/AKT/eNOS- signaling pathway, and consequently accelerated neuronal regeneration and functional recovery of SCI rats compared to BMECs. Our findings suggested a promising role of SCMECs in restoring vascularization and neural regeneration.

2.
Adv Healthc Mater ; 12(27): e2301169, 2023 10.
Article in English | MEDLINE | ID: mdl-37405810

ABSTRACT

Controllable drug delivery systems (DDS) can overcome the disadvantages of conventional drug administration processes, such as high dosages or repeated administration. Herein, a smart DDS collagen hydrogel is deployed for spinal cord injury (SCI) repair based on modular designing of "egg" nanoparticles (NPs) that ingeniously accomplish controlled drug release via inducing a signaling cascade in response to external and internal stimuli. The "egg" NPs consist of a three-layered structure: tannic acid/Fe3+ /tetradecanol "eggshell," zeolitic imidazolate framework-8 (ZIF-8) "egg white," and paclitaxel "yolk." Then NPs served as a crosslinking epicenter, blending with collagen solutions to generate functional hydrogels. Remarkably, the "eggshell" efficiently converts near-infrared (NIR) irradiation into heat. Subsequently, tetradecanol can be triggered to disintegrate via heat, exposing the structure of ZIF-8. The Zn-imidazolium ion coordination bond of the "egg white" is susceptible to cleaving at the acidic SCI site, decomposing the skeleton to release paclitaxel on demand. As expected, the paclitaxel release rate upon NIR irradiation increased up to threefold on the seventh day, which matches endogenous neural stem/progenitor cell migration process. Taken together, the collagen hydrogels facilitate the neurogenesis and motor function recovery, demonstrating a revolutionary strategy for spatiotemporally controlled drug release and providing guidelines for the design of DDS.


Subject(s)
Hydrogels , Spinal Cord Injuries , Humans , Hydrogels/chemistry , Drug Liberation , Spinal Cord Injuries/drug therapy , Paclitaxel/pharmacology , Collagen/chemistry , Spinal Cord
3.
Adv Sci (Weinh) ; 10(7): e2205997, 2023 03.
Article in English | MEDLINE | ID: mdl-36646515

ABSTRACT

High levels of reactive oxygen species (ROS) and inflammation create a complicated extrinsic neural environment that dominates the initial post-injury period after spinal cord injury (SCI). The compensatory pathways between ROS and inflammation limited the efficacy of modulating the above single treatment regimen after SCI. Here, novel "nanoflower" Mn3 O4 integrated with "pollen" IRF-5 SiRNA was designed as a combination antioxidant and anti-inflammatory treatment after SCI. The "nanoflower" and "pollen" structure was encapsulated with a neutrophil membrane for protective and targeted delivery. Furthermore, valence-engineered nanozyme Mn3 O4 imitated the cascade response of antioxidant enzymes with a higher substrate affinity compared to natural antioxidant enzymes. Nanozymes effectively catalyzed ROS to generate O2 , which is advantageous for reducing oxidative stress and promoting angiogenesis. The screened "pollen" IRF-5 SiRNA could reverse the inflammatory phenotype by reducing interferon regulatory factors-5 (IRF-5) expression (protein level: 73.08% and mRNA level: 63.10%). The decreased expression of pro-inflammatory factors reduced the infiltration of inflammatory cells, resulting in less neural scarring. In SCI rats, multifunctional nanozymes enhanced the proliferation of various neuronal subtypes (motor neurons, interneurons, and sensory neurons) and the recovery of locomotor function, demonstrating that the remodeling of the extrinsic neural environment is a promising strategy to facilitate nerve regeneration.


Subject(s)
Spinal Cord Injuries , Spinal Cord Regeneration , Tissue Engineering , Animals , Rats , Antioxidants , Inflammation/complications , Rats, Sprague-Dawley , Reactive Oxygen Species , RNA, Small Interfering , Spinal Cord Injuries/therapy , Tissue Engineering/methods , Nanotechnology/methods
4.
Acta Biomater ; 155: 235-246, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36384221

ABSTRACT

Transplantation of allogeneic adult spinal cord tissues (aSCTs) to replace the injured spinal cord, serves as a promising strategy in complete spinal cord injury (SCI) repair. However, in addition to allograft immune rejection, damage-associated molecular pattern (DAMP)-mediated inflammatory microenvironments greatly impair the survival and function of transplants. In this study, we aimed to regulate the immune microenvironment after aSCT implantation by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. The F-G/H hydrogel exhibited the capacities of DAMP scavenging, sustainably released anti-inflammatory cytokines, and reduced lymphocyte accumulation, thereby modulating the immune response and enhancing the survival and function of aSCTs. When the hydrogel was used in combination with a systemic immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. This biomaterial-based immunomodulatory strategy may provide the potential for spinal cord graft replacement for treating SCI. STATEMENT OF SIGNIFICANCE: In this study, we aimed to regulate the immune microenvironment by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. We found that with the treatment of F-G/H hydrogel, the aSCT survival and function was significantly improved, as a result of reducing recruitment and activation of immune cells through TLR- and ST-2- related signaling. With the combination of immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. Findings from this work suggest the potential application of the F-G/H as a biomaterial-based immunoregulatory strategy for improving the therapeutic efficiency of the transplanted spinal cord graft for spinal cord injury repair.


Subject(s)
Hematopoietic Stem Cell Transplantation , Spinal Cord Injuries , Rats , Animals , Hydrogels/pharmacology , Hyaluronic Acid/pharmacology , Tissue Survival , Gelatin/pharmacology , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy , Spinal Cord , Anti-Inflammatory Agents , Cytokines , Biocompatible Materials
5.
Biomaterials ; 280: 121279, 2022 01.
Article in English | MEDLINE | ID: mdl-34847433

ABSTRACT

Spinal cord injury (SCI) creates an inflammatory microenvironment characterized by damage-associated molecular patterns (DAMPs) and immune cell activation that exacerbate secondary damage and impair neurological recovery. Here we develop an immunoregulatory hydrogel scaffold for treating SCI that scavenges DAMPs and slowly releases the anti-inflammatory cytokine interleukin-10 (IL-10). We created this dual-functional scaffold by modifying a photocrosslinked gelatin hydrogel with the cationic, DAMP-binding polymer poly (amidoamine) and with IL-10, and compared the therapeutic activity of this scaffold with that of gelatin-only, gelatin + poly (amidoamine), and gelatin + IL-10 scaffolds in vitro and in vivo. In vitro, the dual-functional scaffold scavenged anionic DAMPs and exhibited sustained release of IL-10, reduced the proinflammatory responses of macrophages and microglia, and enhanced the neurogenic differentiation of neural stem cells. In a complete transection SCI mouse model, the injected dual-functional scaffold suppressed proinflammatory cytokine production, promoted the M2 macrophage/microglia phenotype, and led to neural regeneration and axon growth without scar formation to a greater extent than the single-function or control scaffolds. This DAMP-scavenging, IL-10-releasing scaffold provides a new strategy for promoting neural regeneration and motor function recovery following severe SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord Regeneration , Animals , Hydrogels , Interleukin-10 , Mice , Nerve Regeneration , Recovery of Function , Spinal Cord , Spinal Cord Injuries/drug therapy
6.
FASEB J ; 35(7): e21705, 2021 07.
Article in English | MEDLINE | ID: mdl-34105826

ABSTRACT

Keloids are fibrotic lesions that grow unceasingly and invasively and are driven by local mechanical stimuli. Unlike other fibrotic diseases and normal wound healing, keloids exhibit little transformation of dermal fibroblasts into α-SMA+ myofibroblasts. This study showed that asporin is the most strongly expressed gene in keloids and its gene-ontology terms relate strongly to ECM metabolism/organization. Experiments with human dermal cells (HDFs) showed that asporin overexpression/treatment abrogated the HDF ability to adopt a perpendicular orientation when subjected to stretching tension. It also induced calcification of the surrounding 3D collagen matrix. Asporin overexpression/treatment also prevented the HDFs from remodeling the surrounding 3D collagen matrix, leading to a disorganized network of thick, wavy collagen fibers that resembled keloid collagen architecture. This in turn impaired the ability of the HDFs to contract the collagen matrix. Asporin treatment also made the fibroblasts impervious to the fibrous collagen contraction of α-SMA+ myofibroblasts, which normally activates fibroblasts. Thus, by calcifying collagen, asporin prevents fibroblasts from linearly rearranging the surrounding collagen; this reduces both their mechanosensitivity and mechanosignaling to each other through the collagen network. This blocks fibroblast activation and differentiation into the mature myofibroblasts that efficiently remodel the extracellular matrix. Consequently, the fibroblasts remain immature, highly proliferative, and continue laying down abundant extracellular matrix, causing keloid growth and invasion. Notably, dermal injection of asporin-overexpressing HDFs into murine wounds recapitulated keloid collagen histopathological characteristics. Thus, disrupted interfibroblast mechanocommunication may promote keloid progression. Asporin may be a new diagnostic biomarker and therapeutic target for keloids.


Subject(s)
Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Keloid/prevention & control , Mechanotransduction, Cellular , Animals , Cells, Cultured , Disease Progression , Extracellular Matrix Proteins/genetics , Fibroblasts/pathology , Gene Expression Regulation , Humans , Keloid/genetics , Keloid/metabolism , Keloid/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Skin/metabolism
7.
Tissue Eng Part A ; 27(3-4): 223-236, 2021 02.
Article in English | MEDLINE | ID: mdl-32539550

ABSTRACT

In knee osteoarthritis (OA), there is more pronounced cartilage damage in the medial compartment ("lesion zone") than the lateral compartment ("remote zone"). This study fills a gap in the literature by conducting a systematic comparison of cartilage and chondrocyte characteristics from these two zones. It also investigates whether chondrocytes from the different zones respond distinctly to changes in the physical and mechanical microenvironment using three-dimensional porous scaffolds by changing stiffness and pore size. Cartilage was harvested from patients with end-stage varus knee OA. Cartilage from the lesion and remote zones were compared through histological and biomechanical assessments, and through proteomic and gene transcription analyses of chondrocytes. Gelatin scaffolds with varied pore sizes and stiffness were used to investigate in vitro microenvironmental regulation of chondrocytes from the two zones. Cartilage from the lesion and remote zones differed significantly (p < 0.05) in histological and biomechanical characteristics, as well as phenotype, protein, and gene expression of chondrocytes. Chondrocytes from both zones were sensitive to changes in the structural and mechanical properties of gelatin scaffolds. Of interest, although all chondrocytes better retained chondrocyte phenotype in stiffer scaffolds, those from the lesion and remote zones, respectively, preferred scaffolds with larger and smaller pores. Distinct variations exist in cartilage and chondrocyte characteristics in the lesion and remote zones of knee OA. Cells in these two zones respond differently to variations in the physical and mechanical microenvironment. Understanding and manipulating these differences will facilitate the development of more efficient and precise diagnostic and therapeutic approaches for knee OA.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Chondrocytes , Humans , Porosity , Proteomics
8.
Adv Healthc Mater ; 9(18): e2000531, 2020 09.
Article in English | MEDLINE | ID: mdl-32803857

ABSTRACT

Engineering large and functional tissue constructs with complex structures (e.g., external ear or nose) for reparation and reconstruction of tissue defects remains one of the major challenges in regenerative medicine, which demands abundant cell sources, advanced biofabrication schemes, and satisfactory integration with the host for long-term efficacy post implantation. Here the 'Microtissue Assembly in 3D-Printed-template-Scaffold' (3D-MAPS), as a platform technology to rapidly fabricate centimeter-sized functional tissue constructs with complex structures, is developed. 3D-MAPS facilitates bottom-up assembly of large-scale manufactured microtissues within the 3D-printed hollow polymeric templates with pre-defined architectures. The assembly and fusion of 2×106 mesenchymal stem cell-based microtissues within the defined 3D-printed template is further enhanced by addition of a natural protein crosslinker (i.e., transglutaminase (TGase)), and thereby achieves construction of centimeter-sized tissue with high cell viability and mechanical stability in vitro within 30 min. Further in vivo implantation of the 3D-MAPS-fabricated ear-like tissue construct in rabbit models assisted by flap prefabrication technique results in increased structural vascular support and strengthened functional survival. Thus, the TGase-enhanced 3D-MAPS demonstrates its potential and feasibility as a powerful biofabrication platform for tissue engineering application.


Subject(s)
Tissue Scaffolds , Transglutaminases , Animals , Printing, Three-Dimensional , Rabbits , Regenerative Medicine , Tissue Engineering
9.
Acta Biomater ; 114: 170-182, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32771588

ABSTRACT

Tissue engineering using traditional size fixed scaffolds and injectable biomaterials are faced with many limitations due to the difficulties of producing macroscopic functional tissues. In this study, 3D functional tissue constructs were developed by inducing self-assembly of microniches, which were cell-laden gelatin microcryogels. During self-assembly, the accumulation of extracellular matrix (ECM) components was found to strengthen cell-cell and cell-ECM interactions, leading to the construction of a 'native' microenvironment that better preserved cell viability and functions. MSCs grown in self-assembled constructs showed increased maintenance of stemness, reduced senescence and improved paracrine activity compared with cells grown in individual microniches without self-assembly. As an example of applying the self-assembled constructs in tissue regeneration, the constructs were used to induce in vivo articular cartilage repair and successfully regenerated hyaline-like cartilage tissue in the absence of other extrinsic factors. This unique approach of developing self-assembled 3D functional constructs holds great promise for the generation of tissue engineered organoids and repair of challenging tissue defects. STATEMENT OF SIGNIFICANCE: We developed 3D functional tissue constructs using a unique gelatin-based microscopic hydrogel (microcryogels). Mesenchymal stem cells (MSCs) were loaded into gelatin microcryogels to form microscopic cell-laden units (microniches), which were induced to undergo self-assembly using a specially designed 3D printed frame. Extracellular matrix accumulation among the microniches resulted in self-assembled macroscopic constructs with superior ability to maintain the phenotypic characteristics and stemness of MSCs, together with the suppression of senescence and enhanced paracrine function. As an example of application in tissue regeneration, the self-assembled constructs were shown to successfully repair articular cartilage defects without any other supplements. This unique strategy for developing 3D functional tissue constructs allows the optimisation of stem cell functions and construction of biomimetic tissue organoids.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Chondrogenesis , Extracellular Matrix , Hydrogels , Tissue Engineering , Tissue Scaffolds
10.
Proc Natl Acad Sci U S A ; 117(20): 10832-10838, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32358190

ABSTRACT

While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context of myofibroblast-fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast-fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 µm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.


Subject(s)
Fibroblasts/metabolism , Fibrosis/metabolism , Myofibroblasts/metabolism , Signal Transduction/physiology , Animals , Discoidin Domain Receptor 2/metabolism , Humans , Integrins , Ion Channels/metabolism , Mechanotransduction, Cellular
11.
Int Wound J ; 16(3): 852-859, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30864269

ABSTRACT

The aetiology of keloids is becoming clearer, but many questions remain, including about the most optimal treatment. Current therapies include surgical excision, radiotherapy, and various pharmaceutical drugs. However, none of these drugs are keloid-specific. Moreover, all current interventions are associated with high recurrence rates. Here, we review the pharmaceutical interventions that are currently available. All are based on the fact that keloids are an expanding solid mass with intense chronic inflammation at its advancing edges. Consequently, current pharmaceuticals aim to reduce the mass and/or symptoms of keloids, similar to surgery and radiotherapy. They include chemotherapies, immunotherapies, volume-reducing therapies, and anti-inflammatory therapies. We also describe new advances in keloid pharmaceuticals. They include drugs that were designed to treat systemic diseases such as hypertension or breast cancer but were found to also treat keloids. Furthermore, recent progress in genetic, epigenetic, and stem cell therapies suggests that they could become useful in the keloid field. This review of pharmaceutical advances will hopefully promote additional research and the development of effective and specific pharmaceuticals for keloids.


Subject(s)
Cicatrix, Hypertrophic/therapy , Drug Therapy/methods , Keloid/therapy , Radiotherapy/methods , Stem Cell Transplantation/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
12.
Nat Mater ; 16(12): 1252-1261, 2017 12.
Article in English | MEDLINE | ID: mdl-29170554

ABSTRACT

The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FµNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FµNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FµNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FµNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.


Subject(s)
Cellular Microenvironment , Endothelial Cells/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Mechanotransduction, Cellular , Neovascularization, Pathologic/metabolism , Endothelial Cells/pathology , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/pathology , Male , Neovascularization, Pathologic/pathology
13.
J Vis Exp ; (128)2017 10 04.
Article in English | MEDLINE | ID: mdl-29053690

ABSTRACT

To upgrade traditional 2D cell culture to 3D cell culture, we have integrated microfabrication with cryogelation technology to produce macroporous microscale cryogels (microcryogels), which can be loaded with a variety of cell types to form 3D microtissues. Herein, we present the protocol to fabricate versatile 3D microtissues and their applications in regenerative therapy and drug screening. Size and shape-controllable microcryogels can be fabricated on an array chip, which can be harvested off-chip as individual cell-loaded carriers for injectable regenerative therapy or be further assembled on-chip into 3D microtissue arrays for high-throughput drug screening. Due to the high elastic nature of these microscale cryogels, the 3D microtissues exhibit great injectability for minimally invasive cell therapy by protecting cells from mechanical shear force during injection. This ensures enhanced cell survival and therapeutic effect in the mouse limb ischemia model. Meanwhile, assembly of 3D microtissue arrays in a standard 384-multi-well format facilitates the use of common laboratory facilities and equipment, enabling high-throughput drug screening on this versatile 3D cell culture platform.


Subject(s)
High-Throughput Screening Assays/methods , Regenerative Medicine/methods , Animals , Bioengineering , Cell Survival/drug effects , Cryogels , Drug Evaluation, Preclinical , Female , Injections , Mice , Mice, Inbred BALB C , Mice, Nude
14.
Biomaterials ; 126: 1-9, 2017 05.
Article in English | MEDLINE | ID: mdl-28237907

ABSTRACT

Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow satisfactory therapeutic efficacy and minimized side-effects. Here, we rationally designed a pathology-targeted cell delivery strategy leveraging injectable micro-scaffolds as cell-loading capsule and endogenous tissue transglutaminase (TGase) at lesion site as adhesive. Up-regulated TGase post-liver injury catalyzed chemical bonding between the glutamine and lysine residues on liver surface and micro-scaffolds both ex vivo and in vivo, facilitating sufficient adhesion on the pathological liver. Upon intraperitoneal injection, Mesenchymal Stem Cell-loaded capsules, exhibiting cell protection from shear-induced damage and post-transplantation anoikis, adhered to the CCl4-treated liver with a hundred-fold improvement in targeting efficiency (70.72%) compared to free-cell injection, which dramatically improved mice survival (33.3% vs. 0% for free-cell therapy) even with low-dosage treatment. This unique and widely-applicable cell delivery mechanism and strategy hold great promise for transforming cell therapy for refractory diseases.


Subject(s)
Drug Delivery Systems , GTP-Binding Proteins/metabolism , Injections , Tissue Scaffolds/chemistry , Transglutaminases/metabolism , Animals , Biocatalysis , Capsules , Cell Adhesion , Humans , Liver/injuries , Liver/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice, Inbred BALB C , Mice, Nude , Polyethylene Glycols/chemistry , Protein Glutamine gamma Glutamyltransferase 2
15.
Int Wound J ; 14(5): 764-771, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27995750

ABSTRACT

Keloids are fibroproliferative skin disorders characterised clinically by continuous horizontal progression and post-surgical recurrence and histologically by the accumulation of collagen and fibroblast ingredients. Till now, their aetiology remains clear, which may cover genetic, environmental and metabolic factors. Evidence in the involvement of local mechanics (e.g. predilection site and typical shape) and the progress in mechanobiology have incubated our stiffness gap hypotheses in illustrating the chronic but constant development in keloid. We put forward that the enlarged gap between extracellular matrix (ECM) stiffness and cellular stiffness potentiates keloid progression. Matrix stiffness itself provides organisational guidance cues to regulate the mechanosensitive resident cells (e.g. proliferation, migration and apoptosis). During this dynamic process, the ECM stiffness and cell stiffness are not well balanced, and the continuously enlarged stiffness gap between them potentiates keloid progression. The cushion factors, such as prestress for cell stiffness and topology for ECM stiffness, serve as compensations, the decompensation of which aggravates keloid development. It can well explain the typical shape of keloids, their progression in a horizontal but not vertical direction and the post-surgical recurrence, which were evidenced by our clinical cases. Such a stiffness gap hypothesis might be bridged to mechanotherapeutic approaches for keloid progression.


Subject(s)
Elasticity/physiology , Keloid/physiopathology , Skin Diseases/physiopathology , Wound Healing/physiology , Wounds and Injuries/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...