Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
EBioMedicine ; 106: 105228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013324

ABSTRACT

BACKGROUND: It is uncertain which biological features underpin the response of rectal cancer (RC) to radiotherapy. No biomarker is currently in clinical use to select patients for treatment modifications. METHODS: We identified two cohorts of patients (total N = 249) with RC treated with neoadjuvant radiotherapy (45Gy/25) plus fluoropyrimidine. This discovery set included 57 cases with pathological complete response (pCR) to chemoradiotherapy (23%). Pre-treatment cancer biopsies were assessed using transcriptome-wide mRNA expression and targeted DNA sequencing for copy number and driver mutations. Biological candidate and machine learning (ML) approaches were used to identify predictors of pCR to radiotherapy independent of tumour stage. Findings were assessed in 107 cases from an independent validation set (GSE87211). FINDINGS: Three gene expression sets showed significant independent associations with pCR: Fibroblast-TGFß Response Signature (F-TBRS) with radioresistance; and cytotoxic lymphocyte (CL) expression signature and consensus molecular subtype CMS1 with radiosensitivity. These associations were replicated in the validation cohort. In parallel, a gradient boosting machine model comprising the expression of 33 genes generated in the discovery cohort showed high performance in GSE87211 with 90% sensitivity, 86% specificity. Biological and ML signatures indicated similar mechanisms underlying radiation response, and showed better AUC and p-values than published transcriptomic signatures of radiation response in RC. INTERPRETATION: RCs responding completely to chemoradiotherapy (CRT) have biological characteristics of immune response and absence of immune inhibitory TGFß signalling. These tumours may be identified with a potential biomarker based on a 33 gene expression signature. This could help select patients likely to respond to treatment with a primary radiotherapy approach as for anal cancer. Conversely, those with predicted radioresistance may be candidates for clinical trials evaluating addition of immune-oncology agents and stromal TGFß signalling inhibition. FUNDING: The Stratification in Colorectal Cancer Consortium (S:CORT) was funded by the Medical Research Council and Cancer Research UK (MR/M016587/1).


Subject(s)
Machine Learning , Rectal Neoplasms , Transforming Growth Factor beta , Humans , Rectal Neoplasms/genetics , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Rectal Neoplasms/metabolism , Rectal Neoplasms/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Female , Male , Middle Aged , Aged , Gene Expression Profiling , Transcriptome , Biomarkers, Tumor/genetics , Treatment Outcome , Gene Expression Regulation, Neoplastic , Prognosis , Adult
2.
Clin Cancer Res ; 27(1): 288-300, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33028592

ABSTRACT

PURPOSE: The DNA damage immune response (DDIR) assay was developed in breast cancer based on biology associated with deficiencies in homologous recombination and Fanconi anemia pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and esophageal cancers. In colorectal cancer, there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in colorectal cancer and characterized the biology in DDIR-positive colorectal cancer. EXPERIMENTAL DESIGN: Samples and clinical data were assessed according to DDIR status from patients who received either 5-fluorouracil (5-FU) or 5FUFA (bolus and infusion 5-FU with folinic acid) plus oxaliplatin (FOLFOX) within the FOCUS trial (n = 361, stage IV), or neoadjuvant FOLFOX in the FOxTROT trial (n = 97, stage II/III). Whole transcriptome, mutation, and IHC data of these samples were used to interrogate the biology of DDIR in colorectal cancer. RESULTS: Contrary to our hypothesis, DDIR-negative patients displayed a trend toward improved outcome for oxaliplatin-based chemotherapy compared with DDIR-positive patients. DDIR positivity was associated with microsatellite instability (MSI) and colorectal molecular subtype 1. Refinement of the DDIR signature, based on overlapping IFN-related chemokine signaling associated with DDIR positivity across colorectal cancer and breast cancer cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in colorectal cancer. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in colorectal cancer. However, data presented here suggest the potential of the DDIR assay in identifying immune-rich tumors that may benefit from immune checkpoint blockade, beyond current use of MSI status.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biological Assay/methods , Biomarkers, Tumor/genetics , Colorectal Neoplasms/therapy , DNA Damage/immunology , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/methods , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/mortality , DNA Damage/drug effects , DNA Mutational Analysis , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Profiling , Humans , Leucovorin/pharmacology , Leucovorin/therapeutic use , Male , Microsatellite Instability , Middle Aged , Mutation , Neoadjuvant Therapy/methods , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Progression-Free Survival , Randomized Controlled Trials as Topic
3.
Mol Cell Biol ; 28(16): 4915-26, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18541663

ABSTRACT

Set2 (KMT3)-dependent methylation (me) of histone H3 at lysine 36 (H3K36) promotes deacetylation of transcribed chromatin and represses cryptic promoters within genes. Although Set2 is the only methyltransferase (KMTase) for H3K36 in yeast, it is not known if Set2 is regulated or whether the different methylation states at H3K36 are functionally distinct. Here we show that the N-terminal 261 residues of Set2 (Set2(1-261)), containing the SET KMTase domain, are sufficient for H3K36me2, histone deacetylation, and repression of cryptic promoters at STE11. Set2-catalyzed H3K36me2 does not require either Ctk1-dependent phosphorylation of RNA polymerase II (RNAPII) or the presence of the phospho-C-terminal domain (CTD) interaction (SRI) domain of Set2. This finding is consistent with a known correlation between H3K36me2 and whether a gene is on or off, but not the level of activity of a gene. By contrast, H3K36me3 requires Spt6, proline 38 on histone H3 (H3P38), the CTD of RNAPII, Ctk1, and the C-terminal SRI domain of Set2. We suggest that the C-terminal region of Set2, in conjunction with the phosphorylated CTD of RNAPII, influences the KMTase activity to promote H3K36me3 during transcription elongation.


Subject(s)
Histones/metabolism , Lysine/metabolism , Nuclear Proteins/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Acetylation , Chromatin/metabolism , Gene Expression Regulation, Fungal , Histone Chaperones , Methylation , Nuclear Proteins/chemistry , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Transcriptional Elongation Factors
SELECTION OF CITATIONS
SEARCH DETAIL