Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 2: 17064, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28452987

ABSTRACT

Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen-lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or consistent evidence of either positive or negative host density dependence to the lytic-lysogenic switch. Other metrics are therefore needed to understand the drivers of the lytic-lysogenic decision in viral communities and to test models of the host density-dependent viral lytic-lysogenic switch.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Lysogeny , Bacteriophages/genetics , DNA Damage , Ecosystem , Environment , Symbiosis , Virus Replication
2.
Annu Rev Virol ; 3(1): 197-214, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27741409

ABSTRACT

Viruses are the most abundant and the most diverse life form. In this meta-analysis we estimate that there are 4.80×1031 phages on Earth. Further, 97% of viruses are in soil and sediment-two underinvestigated biomes that combined account for only ∼2.5% of publicly available viral metagenomes. The majority of the most abundant viral sequences from all biomes are novel. Our analysis drawing on all publicly available viral metagenomes observed a mere 257,698 viral genotypes on Earth-an unrealistically low number-which attests to the current paucity of viral metagenomic data. Further advances in viral ecology and diversity call for a shift of attention to previously ignored major biomes and careful application of verified methods for viral metagenomic analysis.


Subject(s)
Bacteriophages/classification , Bacteriophages/genetics , Genome, Viral/genetics , Geologic Sediments/virology , Metagenome/genetics , DNA Viruses/classification , DNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/genetics , Soil Microbiology
3.
Proc Natl Acad Sci U S A ; 112(44): 13675-80, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483471

ABSTRACT

Bacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro. On this basis, we proposed our bacteriophage adherence to mucus (BAM) model of immunity. Here, to test this model, we developed a microfluidic device (chip) that emulates a mucosal surface experiencing constant fluid flow and mucin secretion dynamics. Using mucus-producing human cells and Escherichia coli in the chip, we observed similar accumulation and persistence of mucus-adherent T4 phage and nonadherent T4∆hoc phage in the mucus. Nevertheless, T4 phage reduced bacterial colonization of the epithelium >4,000-fold compared with T4∆hoc phage. This suggests that phage adherence to mucus increases encounters with bacterial hosts by some other mechanism. Phages are traditionally thought to be completely dependent on normal diffusion, driven by random Brownian motion, for host contact. We demonstrated that T4 phage particles displayed subdiffusive motion in mucus, whereas T4∆hoc particles displayed normal diffusion. Experiments and modeling indicate that subdiffusive motion increases phage-host encounters when bacterial concentration is low. By concentrating phages in an optimal mucus zone, subdiffusion increases their host encounters and antimicrobial action. Our revised BAM model proposes that the fundamental mechanism of mucosal immunity is subdiffusion resulting from adherence to mucus. These findings suggest intriguing possibilities for engineering phages to manipulate and personalize the mucosal microbiome.


Subject(s)
Bacteriophage T4/physiology , Escherichia coli/virology , Motion , Mucus/virology
4.
Proc Natl Acad Sci U S A ; 111(28): 10227-32, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24982156

ABSTRACT

Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes.


Subject(s)
Adaptation, Physiological , Bacteria , Coral Reefs , Gene Transfer, Horizontal , Metagenome , Microbiota , Water Pollution , Bacteria/genetics , Bacteria/metabolism , Pacific Ocean
5.
Bacteriophage ; 3(3): e25857, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24228227

ABSTRACT

We recently described a novel, non-host-derived, phage-mediated immunity active at mucosal surfaces, the main site of pathogen entry in metazoans. In that work, we showed that phage T4 adheres to mucus glycoproteins via immunoglobulin-like domains displayed on its capsid. This adherence positions the phage in mucus surfaces where they are more likely to encounter and kill bacteria, thereby benefiting both the phage and its metazoan host. We presented this phage-metazoan symbiosis based on an exclusively lytic model of phage infection. Here we extend our bacteriophage adherence to mucus (BAM) model to consider the undoubtedly more complex dynamics in vivo. We hypothesize how mucus-adherent phages, both lytic and temperate, might impact the commensal microbiota as well as protect the metazoan epithelium from bacterial invasion. We suggest that BAM may provide both an innate and an acquired antimicrobial immunity.

6.
Proc Natl Acad Sci U S A ; 110(26): 10771-6, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23690590

ABSTRACT

Mucosal surfaces are a main entry point for pathogens and the principal sites of defense against infection. Both bacteria and phage are associated with this mucus. Here we show that phage-to-bacteria ratios were increased, relative to the adjacent environment, on all mucosal surfaces sampled, ranging from cnidarians to humans. In vitro studies of tissue culture cells with and without surface mucus demonstrated that this increase in phage abundance is mucus dependent and protects the underlying epithelium from bacterial infection. Enrichment of phage in mucus occurs via binding interactions between mucin glycoproteins and Ig-like protein domains exposed on phage capsids. In particular, phage Ig-like domains bind variable glycan residues that coat the mucin glycoprotein component of mucus. Metagenomic analysis found these Ig-like proteins present in the phages sampled from many environments, particularly from locations adjacent to mucosal surfaces. Based on these observations, we present the bacteriophage adherence to mucus model that provides a ubiquitous, but non-host-derived, immunity applicable to mucosal surfaces. The model suggests that metazoan mucosal surfaces and phage coevolve to maintain phage adherence. This benefits the metazoan host by limiting mucosal bacteria, and benefits the phage through more frequent interactions with bacterial hosts. The relationships shown here suggest a symbiotic relationship between phage and metazoan hosts that provides a previously unrecognized antimicrobial defense that actively protects mucosal surfaces.


Subject(s)
Bacteriophages/immunology , Bacteriophages/physiology , Mucus/immunology , Mucus/virology , Adhesiveness , Animals , Bacterial Adhesion/immunology , Bacteriophage T4/genetics , Bacteriophage T4/immunology , Bacteriophage T4/physiology , Bacteriophages/genetics , Cell Line , Escherichia coli/immunology , Escherichia coli/virology , Host-Pathogen Interactions/immunology , Humans , Mice , Models, Immunological , Mucus/microbiology , Symbiosis/immunology
7.
ISME J ; 7(6): 1150-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23407310

ABSTRACT

Bacteriophages encode auxiliary metabolic genes that support more efficient phage replication. For example, cyanophages carry several genes to maintain host photosynthesis throughout infection, shuttling the energy and reducing power generated away from carbon fixation and into anabolic pathways. Photodamage to the D1/D2 proteins at the core of photosystem II necessitates their continual replacement. Synthesis of functional proteins in bacteria requires co-translational removal of the N-terminal formyl group by a peptide deformylase (PDF). Analysis of marine metagenomes to identify phage-encoded homologs of known metabolic genes found that marine phages carry PDF genes, suggesting that their expression during infection might benefit phage replication. We identified a PDF homolog in the genome of Synechococcus cyanophage S-SSM7. Sequence analysis confirmed that it possesses the three absolutely conserved motifs that form the active site in PDF metalloproteases. Phylogenetic analysis placed it within the Type 1B subclass, most closely related to the Arabidopsis chloroplast PDF, but lacking the C-terminal α-helix characteristic of that group. PDF proteins from this phage and from Synechococcus elongatus were expressed and characterized. The phage PDF is the more active enzyme and deformylates the N-terminal tetrapeptides from D1 proteins more efficiently than those from ribosomal proteins. Solution of the X-ray/crystal structures of those two PDFs to 1.95 Å resolution revealed active sites identical to that of the Type 1B Arabidopsis chloroplast PDF. Taken together, these findings show that many cyanophages encode a PDF with a D1 substrate preference that adds to the repertoire of genes used by phages to maintain photosynthetic activities.


Subject(s)
Amidohydrolases/chemistry , Bacteriophages/enzymology , Bacteriophages/genetics , Synechococcus/virology , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacteriophages/classification , Crystallography, X-Ray , Models, Molecular , Photosynthesis , Photosystem II Protein Complex/metabolism , Phylogeny , Substrate Specificity , Synechococcus/physiology
8.
J Cyst Fibros ; 12(2): 154-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22951208

ABSTRACT

BACKGROUND: Samples collected from CF patient airways often contain large amounts of host-derived nucleic acids that interfere with recovery and purification of microbial and viral nucleic acids. This study describes metagenomic and metatranscriptomic methods that address these issues. METHODS: Microbial and viral metagenomes, and microbial metatranscriptomes, were successfully prepared from sputum samples from five adult CF patients. RESULTS: Contaminating host DNA was dramatically reduced in the metagenomes. Each CF patient presented a unique microbiome; in some Pseudomonas aeruginosa was replaced by other opportunistic bacteria. Even though the taxonomic composition of the microbiomes is very different, the metabolic potentials encoded by the community are very similar. The viral communities were dominated by phages that infect major CF pathogens. The metatranscriptomes reveal differential expression of encoded metabolic potential with changing health status. CONCLUSIONS: Microbial and viral metagenomics combined with microbial transcriptomics characterize the dynamic polymicrobial communities found in CF airways, revealing both the taxa present and their current metabolic activities. These approaches can facilitate the development of individualized treatment plans and novel therapeutic approaches.


Subject(s)
Bacterial Infections/microbiology , Cystic Fibrosis/microbiology , Cystic Fibrosis/virology , Lung/microbiology , Metabolic Networks and Pathways/physiology , Virus Diseases/virology , Adult , Bacterial Infections/genetics , Biota , Cystic Fibrosis/genetics , Humans , Metagenome , Sputum/microbiology , Transcriptome , Virus Diseases/genetics
9.
Am J Respir Cell Mol Biol ; 48(2): 150-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23103995

ABSTRACT

Current therapy for cystic fibrosis (CF) focuses on minimizing the microbial community and the host's immune response through the aggressive use of airway clearance techniques, broad-spectrum antibiotics, and treatments that break down the pervasive endobronchial biofilm. Antibiotic selection is typically based on the susceptibility of individual microbial strains to specific antibiotics in vitro. Often this approach cannot accurately predict medical outcomes because of factors both technical and biological. Recent culture-independent assessments of the airway microbial and viral communities demonstrated that the CF airway infection is considerably more complex and dynamic than previously appreciated. Understanding the ecological and evolutionary pressures that shape these communities is critically important for the optimal use of current therapies (in both the choice of therapy and timing of administration) and the development of newer strategies. The climax-attack model (CAM) presented here, grounded in basic ecological principles, postulates the existence of two major functional communities. The attack community consists of transient viral and microbial populations that induce strong innate immune responses. The resultant intense immune response creates microenvironments that facilitate the establishment of a climax community that is slower-growing and inherently resistant to antibiotic therapy. Newer methodologies, including sequence-based metagenomic analysis, can track not only the taxonomic composition but also the metabolic capabilities of these changing viral and microbial communities over time. Collecting this information for CF airways will enable the mathematical modeling of microbial community dynamics during disease progression. The resultant understanding of airway communities and their effects on lung physiology will facilitate the optimization of CF therapies.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/drug therapy , Bacteria/classification , Bacteria/isolation & purification , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Humans
10.
PLoS One ; 7(9): e43233, 2012.
Article in English | MEDLINE | ID: mdl-22970122

ABSTRACT

The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.


Subject(s)
Bacteria/metabolism , Coral Reefs , Animals , Basal Metabolism , Energy Metabolism , Fishes/metabolism , Human Activities , Humans , Islands , Linear Models , Pacific Ocean
11.
Nat Rev Microbiol ; 10(8): 583-8, 2012 07 16.
Article in English | MEDLINE | ID: mdl-22796885

ABSTRACT

Every four years, the Olympic Games plays host to competitors who have built on their natural talent by training for many years to become the best in their chosen discipline. Similar spirit and endeavour can be found throughout the microbial world, in which every day is a competition to survive and thrive. Microorganisms are trained through evolution to become the fittest and the best adapted to a particular environmental niche or lifestyle, and to innovate when the 'rules of the game' are changed by alterations to their natural habitats. In this Essay, we honour the best competitors in the microbial world by inviting them to take part in the inaugural Microbial Olympics.


Subject(s)
Antibiosis , Biota , Environmental Microbiology , Biological Evolution
12.
Am J Respir Cell Mol Biol ; 46(2): 127-31, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21980056

ABSTRACT

Microbial communities in the lungs of patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) have been shown to be spatially heterogeneous. Viral communities may also vary spatially, leading to localized viral populations and infections. Here, we characterized viral communities from multiple areas of the lungs of two patients with late-stage CF using metagenomics, that is, the explanted lungs from a transplant patient and lungs acquired postmortem. All regions harbored eukaryotic viruses that may infect the human host, notably herpesviruses, anelloviruses, and papillomaviruses. In the highly diseased apical lobes of explant lungs, viral diversity was extremely low, and only eukaryotic viruses were present. The absence of phage suggests that CF-associated microbial biofilms may escape top-down controls by phage predation. The phages present in other lobes of explant lungs and in all lobes of postmortem lungs comprised distinct communities, and encoded genes for clinically important microbial phenotypes, including small colony variants and antibiotic resistance. Based on the these observations, we postulate that viral communities in CF lungs are spatially distinct and contribute to CF pathology by augmenting the metabolic potential of resident microbes, as well as by directly damaging lung tissue via carcinomas and herpesviral outbreaks.


Subject(s)
Cystic Fibrosis/virology , DNA Viruses/isolation & purification , Bacteriophages/genetics , Cystic Fibrosis/complications , DNA Viruses/classification , Drug Resistance, Microbial/genetics , Humans , Virus Diseases/complications
13.
Proc Biol Sci ; 279(1733): 1655-64, 2012 Apr 22.
Article in English | MEDLINE | ID: mdl-22090385

ABSTRACT

Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.


Subject(s)
Anthozoa/physiology , Chlorophyta/physiology , Phaeophyceae/physiology , Seawater/microbiology , Animals , Cell Hypoxia , Coral Reefs , Models, Theoretical , Population Dynamics
14.
ISME J ; 4(6): 739-51, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20147985

ABSTRACT

The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral-microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.


Subject(s)
Archaea/growth & development , Bacteria/growth & development , Ecosystem , Metagenome , Viruses/growth & development , Water Microbiology , Archaea/genetics , Bacteria/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , DNA, Viral/genetics , Fresh Water/microbiology , Genomic Library , Genotype , Salinity , Time Factors , Viruses/genetics
15.
Environ Microbiol ; 11(11): 2863-73, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19659499

ABSTRACT

Roseophage SIO1 is a lytic marine phage that infects Roseobacter SIO67, a member of the Roseobacter clade of near-shore alphaproteobacteria. Roseophage SIO1 was first isolated in 1989 and sequenced in 2000. We have re-sequenced and re-annotated the original isolate. Our current annotation could only assign functions to seven additional open reading frames, indicating that, despite the advances in bioinformatics tools and increased genomic resources, we are still far from being able to translate phage genomic sequences into biological functions. In 2001, we isolated four new strains of Roseophage SIO1 from California near-shore locations. The genomes of all four were sequenced and compared against the original Roseophage SIO1 isolated in 1989. A high degree of conservation was evident across all five genomes; comparisons at the nucleotide level yielded an average 97% identity. The observed differences were clustered in protein-encoding regions and were mostly synonymous. The one strain that was found to possess an expanded host range also showed notable changes in putative tail protein-coding regions. Despite the possibly rapid evolution of phage and the mostly uncharacterized diversity found in viral metagenomic data sets, these findings indicate that viral genomes such as the genome of SIO1-like Roseophages can be stably maintained over ecologically significant time and distance (i.e. over a decade and approximately 50 km).


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Roseobacter/virology , California , Conserved Sequence , Gene Order , Phylogeny , Seawater/microbiology , Seawater/virology , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...