Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Pharmacol Transl Sci ; 7(5): 1348-1363, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751621

ABSTRACT

Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, ß-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both ß-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.

2.
J Neuroimmune Pharmacol ; 19(1): 14, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642237

ABSTRACT

Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.


Subject(s)
Interferon-gamma , Lipopolysaccharides , Interferon-gamma/pharmacology , Lipopolysaccharides/toxicity , Microglia , Signal Transduction , Cytokines/metabolism , NF-kappa B/metabolism
3.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38234768

ABSTRACT

Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.

4.
Mech Ageing Dev ; 210: 111762, 2023 03.
Article in English | MEDLINE | ID: mdl-36509213

ABSTRACT

Changes in gene expression with age are typically normalised to constitutively expressed reference genes (RGs). However, RG expression may be affected by age or overall health and most studies use only male animals. We investigated whether expression of common RGs (Gapdh, Gusb, Rplp0, B2m, Tubb5, Rpl7l1, Hprt, Rer1) was affected by age, sex and/or overall health (frailty index) in skeletal muscle from young (4-mos) and aged (25-26-mos) mice. Standard RG selection programs recommended Gapdh (RefFinder/Genorm/NormFinder) or Rpl7l1 (BestKeeper) without considering age and sex. Analysis of raw Cq values showed only Rplp0 was stable in both sexes at both ages. When qPCR data were normalised to Rplp0, age affected RG expression, especially in females. For example, Hprt expression declined with age (Hprt=9.8 ×10-2 ± 4.7 ×10-2 vs. 6.5 ×10-3 ± 8.8 ×10-4; mean±SEM), while Gusb expression increased (6.0 ×10-4 ± 5.5 ×10-5 vs. 1.7 ×10-3 ± 3.1 ×10-4; n = 5/group; p < 0.05). These effects were not seen in males. Tubb5 and Gapdh were not affected by age or sex when normalised to Rplp0. Similar results were seen with normalisation by Gapdh or the Rplp0/Gapdh pair. Interestingly, RG expression was graded not only by age but by frailty. These data demonstrate that age, sex, and frailty of animals must be carefully considered when selecting RGs to normalise mRNA abundance data.


Subject(s)
Frailty , Gene Expression Profiling , Female , Male , Mice , Animals , Gene Expression Profiling/methods , Frailty/genetics , Hypoxanthine Phosphoribosyltransferase , RNA, Messenger/genetics , Muscle, Skeletal , Real-Time Polymerase Chain Reaction/methods
5.
J Neuroimmunol ; 372: 577971, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36150252

ABSTRACT

Perturbation of the endocannabinoid system can have profound effects on immune function and synaptic plasticity. Microglia are one of few cell types with a self-contained endocannabinoid system and are positioned at the interface between the immune system and the central nervous system. Past work has produced conflicting results with respect to the effects of pro-inflammatory conditions on the microglial endocannabinoid system. Thus, we systematically investigated the relationship between the concentration of two distinct pro-inflammatory stimuli, lipopolysaccharide and interferon gamma, on the abundance of components of the endocannabinoid system within microglia. Here we show that lipopolysaccharide and interferon gamma influence messenger RNA abundances of the microglial endocannabinoid system in a concentration-dependent manner. Furthermore, we demonstrate that the efficacy of different synthetic cannabinoid treatments with respect to inhibition of microglia nitric oxide release is dependent on the concentration and type of pro-inflammatory stimuli presented to the microglia. This indicates that different pro-inflammatory stimuli influence the capacity of microglia to synthesize, degrade, and respond to cannabinoids which has implications for the development of cannabinoid-based treatments for neuroinflammation.


Subject(s)
Cannabinoids , Microglia , Cannabinoids/metabolism , Cannabinoids/pharmacology , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , Nitric Oxide/metabolism , RNA, Messenger/metabolism
6.
Brain Behav Immun ; 105: 29-43, 2022 10.
Article in English | MEDLINE | ID: mdl-35764268

ABSTRACT

Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.


Subject(s)
Cannabinoids , Microglia , Cannabinoids/pharmacology , Cells, Cultured , Endocannabinoids/metabolism , Microglia/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism
8.
Ann Saudi Med ; 41(1): 1-7, 2021.
Article in English | MEDLINE | ID: mdl-33550905

ABSTRACT

BACKGROUND: Methylenetetrahydrofolate reductase, the encoded by the MTHFR gene, plays a crucial role in converting the amino acid homocysteine to methionine. Two polymorphisms of the MTHFR gene, C677T and A1298C, reportedly reduce enzyme activity, resulting in hyperhomocysteinemia. Patients with C677T and A1298C polymorphisms may be at higher risk for developing abnormal hyperhomocysteinemia, which has been linked to catastrophic neurological including fatal outcomes. OBJECTIVE: Determine the prevalence of the MTHFR gene variants C677T and A1298C among pediatric dental patients treated at King Abdulaziz University Hospital. DESIGN: Cross-sectional. SETTING: Clinics of pediatric dentistry department. SUBJECTS AND METHODS: Healthy Saudi children 6-12 years old with no known allergies were screened for eligibility between May and December 2019. A single investigator collected saliva samples. The MTHFR C677T and A1298C polymorphisms were analyzed using polymerase chain reaction and restriction fragment length polymorphism. MAIN OUTCOME MEASURE: The prevalence of MTHFR gene variants (C677T and A1298C) among the subjects. SAMPLE SIZE: 138. RESULTS: MTHFR C677T polymorphism was present in 36.2% of the sample and 90.0% of children carrying this allele were heterozygotes. MTHFR A1298C polymorphism was present in 91.3% of the sample and 77.0% of the children carrying this allele were heterozygotes. No linkage disequilibrium between MTHFR C677T and MTHFR A1298C was observed within this sample. CONCLUSIONS: Our study found a high frequency of the MTHFR A1298C genotype, which was substantially more abundant than expected based on a Hardy-Weinberg distribution. Therefore, caution is advised in using N2O in Saudi children as the increased prevalence of this MTHFR allele may increase the incidence of serious adverse effects among these children. LIMITATIONS: Further studies are recommended with a larger sample size from randomly selected hospitals from different regions of Saudi Arabia. CONFLICT OF INTEREST: None.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2) , Polymorphism, Genetic , Child , Cross-Sectional Studies , Dental Care , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Prevalence , Saudi Arabia/epidemiology
9.
Geroscience ; 43(3): 1447-1463, 2021 06.
Article in English | MEDLINE | ID: mdl-33403617

ABSTRACT

The human brain requires adequate cerebral blood flow to meet the high demand for nutrients and to clear waste products. With age, there is a chronic reduction in cerebral blood flow in small resistance arteries that can eventually limit proper brain function. The endothelin system is a key mediator in the regulation of cerebral blood flow, but the contributions of its constituent receptors in the endothelial and vascular smooth muscle layers of cerebral arteries have not been well defined in the context of aging. We isolated posterior cerebral arteries from young and aged Fischer 344 rats, as well as ETB receptor knock-out rats and mounted the vessels in plexiglass pressure myograph chambers to measure myogenic tone in response to increasing pressure and targeted pharmacological treatments. We used an ETA receptor antagonist (BQ-123), an ETB receptor antagonist (BQ-788), endothelin-1, an endothelin-1 synthesis inhibitor (phosphoramidon), and vessel denudation to dissect the roles of each receptor in aging vasculature. Aged rats exhibited a higher myogenic tone than young rats, and the tone was sensitive to the ETA antagonist, BQ-123, but insensitive to the ETB antagonist, BQ-788. By contrast, the tone in the vessels from young rats was raised by BQ-788 but unaffected by BQ-123. When the endothelial layer that is normally enriched with ETB1 receptors was removed from young vessels, myogenic tone increased. However, denudation of the endothelial layer did not influence vessels from aged animals. This indicated that endothelial ETB1 receptors were not functional in the vessels from aged rats. There was also an increase in ETA receptor expression with age, whereas ETB receptor expression remained constant between young and aged animals. These results demonstrate that in young vessels, ETB1 receptors maintain a lower myogenic tone, but in aged vessels, a loss of ETB receptor activity allows ETA receptors in vascular smooth muscle cells to raise myogenic tone. Our findings have potentially important clinical implications for treatments to improve cerebral perfusion in older adults with diseases characterized by reduced cerebral blood flow.


Subject(s)
Cerebral Arteries , Receptor, Endothelin B , Vasoconstriction , Animals , Gene Knockout Techniques , Male , Rats , Rats, Inbred F344
10.
Front Pharmacol ; 12: 806417, 2021.
Article in English | MEDLINE | ID: mdl-35185547

ABSTRACT

Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.

11.
J Neurosci Res ; 98(12): 2496-2509, 2020 12.
Article in English | MEDLINE | ID: mdl-32881145

ABSTRACT

The cannabinoid type 1 (CB1 ) receptor and the dopamine type 2 (D2 ) receptor are co-localized on medium spiny neuron terminals in the globus pallidus where they modulate neural circuits involved in voluntary movement. Physical interactions between the two receptors have been shown to alter receptor signaling in cell culture. The objectives of the current study were to identify the presence of CB1 /D2 heteromers in the globus pallidus of C57BL/6J male mice, define how CB1 /D2 heteromer levels are altered following treatment with cannabinoids and/or antipsychotics, and determine if fluctuating levels of CB1 /D2 heteromers have functional consequences. Using in situ proximity ligation assays, we observed CB1 /D2 heteromers in the globus pallidus of C57BL/6J mice. The abundance of the heteromers increased following treatment with the nonselective cannabinoid receptor agonist, CP55,940. In contrast, treatment with the typical antipsychotic haloperidol reduced the number of CB1 /D2 heteromers, whereas the atypical antipsychotic olanzapine treatment had no effect. Co-treatment with CP55,940 and haloperidol had similar effects to haloperidol alone, whereas co-treatment with CP55,940 and olanzapine had similar effects to CP55,940. The observed changes were found to have functional consequences as the differential effects of haloperidol and olanzapine also applied to γ-aminobutyric acid release in STHdhQ7/Q7 cells and motor function in C57BL/6J male mice. This work highlights the clinical relevance of co-exposure to cannabinoids and different antipsychotics over acute and prolonged time periods.


Subject(s)
Antipsychotic Agents/administration & dosage , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoids/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Animals , Cell Line, Transformed , Drug Therapy, Combination , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/agonists
12.
Can J Physiol Pharmacol ; 98(8): 531-540, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32744876

ABSTRACT

The endothelin receptor A (ETA) and endothelin receptor B (ETB) are G protein-coupled receptors that are co-expressed in vascular smooth muscle cells. Endothelin-1 (ET-1) activates endothelin receptors to cause microvascular vasoconstriction. Previous studies have shown that heteromerization between ETA and ETB prolongs Ca2+ transients, leading to prolongation of Gαq-dependent signaling and sustained vasoconstriction. We hypothesized that these effects are in part mediated by the resistance of ETA/ETB heteromers to ß-arrestin recruitment and subsequent desensitization. Using bioluminescence resonance energy transfer 2 (BRET2), we found that ETB has a relatively equal affinity to form either homomers or heteromers with ETA when co-expressed in the human embryonic kidney 293 (HEK293) cells. When co-expressed, activation of ETA and ETB by ET-1 caused a heteromer-specific reduction and delay in ß-arrestin-2 recruitment with a corresponding reduction and delay in ET-1-induced ETA/ETB co-internalization. Furthermore, the co-expression of ETA and ETB inhibited ET-1-induced ß-arrestin-1-dependent extracellular signal-regulated kinase (ERK) phosphorylation while prolonging ET-1-induced Gαq-dependent ERK phosphorylation. ETA/ETB heteromerization mediates the long-lasting vasoconstrictor response to ET-1 by the prolongation of Gαq-dependent signaling and inhibition of ß-arrestin function.


Subject(s)
Protein Multimerization , Receptor, Endothelin A/chemistry , Receptor, Endothelin B/chemistry , beta-Arrestins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Structure, Quaternary , Signal Transduction
13.
PeerJ ; 8: e8806, 2020.
Article in English | MEDLINE | ID: mdl-32219032

ABSTRACT

RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target messenger RNA transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique has been developed over time, an ever-increasing number of divergent protocols have been published. There is now a broad selection of options available to facilitate proper tissue preparation, hybridization, and post-hybridization background removal to achieve optimal results. Here we review the technical aspects of RNA-FISH, examining the most common methods associated with different sample types including cytological preparations and whole-mounts. We discuss the application of commonly used reagents for tissue preparation, hybridization, and post-hybridization washing and provide explanations of the functional roles for each reagent. We also discuss the available probe types and necessary controls to accurately visualize gene expression. Finally, we review the most recent advances in FISH technology that facilitate both highly multiplexed experiments and signal amplification for individual targets. Taken together, this information will guide the methods development process for investigators that seek to perform FISH in organisms that lack documented or optimized protocols.

14.
PeerJ ; 7: e7888, 2019.
Article in English | MEDLINE | ID: mdl-31637135

ABSTRACT

Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression. To obtain reliable results with this method, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging model for the study of biological asymmetry, biomineralization, and evolution and development. However, no systematic assessment of qPCR reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from several commonly studied tissues in L. stagnalis as well as across the entire body. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase, beta-actin, beta-tubulin, ubiquitin, prenylated rab acceptor protein 1, and a voltage gated potassium channel. These genes exhibited a wide range of expression levels among tissues. The tissue-specific stability of each of the genes was consistent when measured by the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. Our data indicate that the most stable reference genes vary among the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle). Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we provide suggestions for strong pairs of reference genes for single- and multi-tissue analyses of RT-qPCR data in L. stagnalis.

15.
Fungal Biol ; 121(3): 212-221, 2017 03.
Article in English | MEDLINE | ID: mdl-28215349

ABSTRACT

Despite the recent surge in mitochondrial (mt) genome sequencing, Kingdom Fungi remains underrepresented with respect to mtDNA. We describe the mt genome of the conifer needle endophyte, Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota). This strain is of interest to the Canadian forestry industry as it produces the anti-insectan compound rugulosin. Sequence was obtained from whole genome shotgun sequencing. Comparison to the only other published Phialocephala mt genome, Phialocephala subalpina, indicates that the suite of common mt genes - cox1-3, cob, nad1-6 and 4L, atp6, 8 and 9, as well as rrnL and rrnS - has retained an identical order. Nad4L remains one of the most conserved mitochondrial genes within Phialocephala. Members of the closely related Phialocephala fortinii s.l. - Acephala appalanata species complex (PAC) share too much sequence similarity to properly resolve lineages using ITS barcoding alone. Using P. scopiformis sequence as an outgroup, we determined ancestral gene states that help confirm clades within Phialocephala. Our results show: (1) the complete mt genome of P. scopiformis, representing the 10th complete mt genome for the order Helotiales (containing >3800 species), and (2) how large-scale genomic patterns, such as mitochondrial gene order, can be used to confirm lineages within fungal species complexes.


Subject(s)
Ascomycota/genetics , Endophytes/genetics , Genome, Fungal , Genome, Mitochondrial , Ascomycota/classification , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Endophytes/classification , Gene Order , Genes, Fungal , Phylogeny , Sequence Analysis, DNA , Synteny , Tracheophyta/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...