Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 108(6): 1127-1139, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37160282

ABSTRACT

For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.


Subject(s)
Insecticides , Malaria , Humans , Primaquine/adverse effects , Mass Drug Administration , Cross-Sectional Studies , Haiti/epidemiology , Feasibility Studies , Mosquito Control , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control
2.
Trop Med Infect Dis ; 8(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36977163

ABSTRACT

Wolbachia infection in Anopheles albimanus mosquitoes can render mosquitoes less capable of spreading malaria. We developed and analyzed a mechanistic compartmental ordinary differential equation model to evaluate the effectiveness of Wolbachia-based vector control strategies among wild Anopheles mosquitoes in Haiti. The model tracks the mosquito life stages, including egg, larva, and adult (male and female). It also accounts for critical biological effects, such as the maternal transmission of Wolbachia through infected females and cytoplasmic incompatibility, which effectively sterilizes uninfected females when they mate with infected males. We derive and interpret dimensionless numbers, including the basic reproductive number and next-generation numbers. The proposed system presents a backward bifurcation, which indicates a threshold infection that needs to be exceeded to establish a stable Wolbachia infection. The sensitivity analysis ranks the relative importance of the epidemiological parameters at baseline. We simulate different intervention scenarios, including prerelease mitigation using larviciding and thermal fogging before the release, multiple releases of infected populations, and different release times of the year. Our simulations show that the most efficient approach to establishing Wolbachia is to release all the infected mosquitoes immediately after the prerelease mitigation process. Moreover, the model predicts that it is more efficient to release during the dry season than the wet season.

3.
Malar J ; 21(1): 10, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983558

ABSTRACT

BACKGROUND: The use of data in targeting malaria control efforts is essential for optimal use of resources. This work provides a practical mechanism for prioritizing geographic areas for insecticide-treated net (ITN) distribution campaigns in settings with limited resources. METHODS: A GIS-based weighted approach was adopted to categorize and rank administrative units based on data that can be applied in various country contexts where Plasmodium falciparum transmission is reported. Malaria intervention and risk factors were used to rank local government areas (LGAs) in Nigeria for prioritization during mass ITN distribution campaigns. Each factor was assigned a unique weight that was obtained through application of the analytic hierarchy process (AHP). The weight was then multiplied by a value based on natural groupings inherent in the data, or the presence or absence of a given intervention. Risk scores for each factor were then summated to generate a composite unique risk score for each LGA. This risk score was translated into a prioritization map which ranks each LGA from low to high priority in terms of timing of ITN distributions. RESULTS: A case study using data from Nigeria showed that a major component that influenced the prioritization scheme was ITN access. Sensitivity analysis results indicate that changes to the methodology used to quantify ITN access did not modify outputs substantially. Some 120 LGAs were categorized as 'extremely high' or 'high' priority when a spatially interpolated ITN access layer was used. When prioritization scores were calculated using DHS-reported state level ITN access, 108 (90.0%) of the 120 LGAs were also categorized as being extremely high or high priority. The geospatial heterogeneity found among input risk factors suggests that a range of variables and covariates should be considered when using data to inform ITN distributions. CONCLUSION: The authors provide a tool for prioritizing regions in terms of timing of ITN distributions. It serves as a base upon which a wider range of vector control interventions could be targeted. Its value added can be found in its potential for application in multiple country contexts, expediated timeframe for producing outputs, and its use of systematically collected malaria indicators in informing prioritization.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/methods , Public Health/statistics & numerical data , Spatial Analysis , Child, Preschool , Emergencies , Humans , Infant , Nigeria
4.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34058123

ABSTRACT

Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts from 771 health facilities reporting from across the country throughout the 6-year period from January 2014 to December 2019. To this end, a novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible catchment sub-model designed to account for the absence of data on case household locations. These maps have focussed the delivery of indoor residual spraying and focal mass drug administration in the Grand'Anse Department in South-Western Haiti.


Subject(s)
Endemic Diseases , Malaria/epidemiology , Seasons , Antimalarials/therapeutic use , Bayes Theorem , Catchment Area, Health , Endemic Diseases/prevention & control , Haiti/epidemiology , Humans , Incidence , Malaria/diagnosis , Malaria/prevention & control , Models, Statistical , Mosquito Control , Spatio-Temporal Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...