Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
2.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893373

ABSTRACT

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Subject(s)
Antineoplastic Agents , Ferroptosis , Nanomedicine , Humans , Ferroptosis/drug effects , Cell Line, Tumor , Nanomedicine/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Ferric Compounds/chemistry , Tumor Microenvironment/drug effects , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/pathology
3.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38903108

ABSTRACT

B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.

4.
Chem Asian J ; 19(10): e202400237, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38563626

ABSTRACT

Herein, we report a rare example of cationic three-dimensional (3D) metal-organic framework (MOF) of [Cu5Cl3(TMPP)]Cl5 ⋅ xSol (denoted as Cu-TMPP; H2TMPP=meso-tetrakis (6-methylpyridin-3-yl) porphyrin; xSol=encapsulated solvates) supported by [Cu8Cl6]10+ cluster secondary building units (SBUs) wherein the eight faces of the Cl--based octahedron are capped by eight Cu2+. Surface-area analysis indicated that Cu-TMPP features a mesoporous structure and its solvate-like Cl- counterions can be exchanged by BF4 -, PF6 -, and NO3 -. The polyvinylpyrrolidone (PVP) coated Cu-TMPP (denoted as Cu-TMPP-PVP) demonstrated good ROS generating ability, producing ⋅OH in the absence of light (peroxidase-like activity) and 1O2 on light irradiation (650 nm; 25 mW cm-2). This work highlights the potential of Cu-TMPP as a functional carrier of anionic guests such as drugs, for the combination therapy of cancer and other diseases.

5.
Br J Haematol ; 204(5): 2077-2085, 2024 May.
Article in English | MEDLINE | ID: mdl-38462764

ABSTRACT

Diamond-Blackfan anaemia (DBA) is a rare, inherited bone marrow failure syndrome with a ribosomal defect causing slowed globin chain production with normal haem synthesis, causing an overabundance of reactive iron/haem and erythroid-specific cellular toxicity. Eltrombopag, a non-peptide thrombopoietin receptor agonist, is a potent intracellular iron chelator and induced a robust durable response in an RPS19-mutated DBA patient on another trial. We hypothesized eltrombopag would improve RBC production in DBA patients. We conducted a single-centre, single-arm pilot study (NCT04269889) assessing safety and erythroid response of 6 months of daily, fixed-dose eltrombopag for DBA patients. Fifteen transfusion-dependent (every 3-5 weeks) patients (median age 18 [range 2-56]) were treated. One responder had sustained haemoglobin improvement and >50% reduction in RBC transfusion frequency. Of note, 7/15 (41%) patients required dose reductions or sustained discontinuation of eltrombopag due to asymptomatic thrombocytosis. Despite the low response rate, eltrombopag has now improved erythropoiesis in several patients with DBA with a favourable safety profile. Dosing restrictions due to thrombocytosis may cause insufficient iron chelation to decrease haem production and improve anaemia in most patients. Future work will focus on erythropoiesis dynamics in patients and use of haem synthesis inhibitors without an impact on other haematopoietic lineages.


Subject(s)
Anemia, Diamond-Blackfan , Benzoates , Hydrazines , Pyrazoles , Humans , Anemia, Diamond-Blackfan/drug therapy , Pyrazoles/therapeutic use , Hydrazines/therapeutic use , Hydrazines/administration & dosage , Hydrazines/adverse effects , Benzoates/therapeutic use , Benzoates/administration & dosage , Benzoates/adverse effects , Adult , Male , Female , Child , Adolescent , Middle Aged , Young Adult , Child, Preschool , Pilot Projects , Treatment Outcome , Receptors, Thrombopoietin/agonists , Recurrence , Erythropoiesis/drug effects
6.
Chemistry ; 30(24): e202400377, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38403857

ABSTRACT

The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three ß-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.

7.
Chem Asian J ; 19(7): e202400005, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38296810

ABSTRACT

A Schiff-base porous polymer has been impregnated with ruthenium trichloride for acceptor-free dehydrogenation coupling (ADC) of secondary alcohols with γ-amino- and 2-aminobenzyl alcohols to give pyridines and quinolines. This heterogenous catalyst exhibited high catalytic efficiency over repeated cycles with wide functional group tolerance.

8.
Haematologica ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38058170

ABSTRACT

Patients with severe aplastic anemia (SAA) are at high risk for morbidity and mortality due to severe infections. We aimed to characterize the role of granulocyte transfusion (GT) in SAA. Primary outcomes were survival from first GT, including overall survival (OS) at last follow up, survival to discharge, and receipt of HSCT. Secondary outcomes included evaluation of clinical response at 7 and 30 days after GT initiation based on a clinical scoring system incorporating microbiological and radiographic response. Twenty-eight SAA patients underwent 30 GT courses with a per-dose median of 1.28 x 109 granulocyte cells/kilogram (range 0.45-4.52 x 109). OS from initial GT to median last follow up (551 days) was 50%, with 39% (11/28) alive at last follow up. Sixty-four percent (18/28) of all patients survived to hospital discharge. Patients with complete, partial, or stable response at 30 days had significantly improved OS compared to non-responders (p=0.0004). Eighty-six percent (18/21) of patients awaiting HSCT during GT underwent transplant and 62% (13/21) survived to post-HSCT discharge. Sex, type of infection, or percentage of days with absolute neutrophil count > 0.2x109/L during GT course were not predictive of survival (p=0.52, p=0.7, p=0.28). Nine of 28 (32%) patients developed new or increased human leukocyte antigen (HLA) alloimmunization during their GT course. GTs in SAA may impact survival in those with improvement or stabilization of their underlying infection. Alloimmunization can occur and OS in this population remains poor, but GTs may be a useful tool to bridge patients to curative treatment with HSCT.

9.
Blood ; 142(25): 2146-2158, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37738626

ABSTRACT

ABSTRACT: Deleterious germ line RUNX1 variants cause the autosomal dominant familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematologic malignancies (HMs). We launched a FPDMM natural history study and, from January 2019 to December 2021, enrolled 214 participants, including 111 patients with 39 different RUNX1 variants from 45 unrelated families. Seventy of 77 patients had thrombocytopenia, 18 of 18 had abnormal platelet aggregometry, 16 of 35 had decreased platelet dense granules, and 28 of 55 had abnormal bleeding scores. Nonmalignant bone marrows showed increased numbers of megakaryocytes in 12 of 55 patients, dysmegakaryopoiesis in 42 of 55, and reduced cellularity for age in 30 of 55 adult and 17 of 21 pediatric cases. Of 111 patients, 19 were diagnosed with HMs, including myelodysplastic syndrome, acute myeloid leukemia, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and smoldering myeloma. Of those 19, 18 were relapsed or refractory to upfront therapy and referred for stem cell transplantation. In addition, 28 of 45 families had at least 1 member with HM. Moreover, 42 of 45 patients had allergic symptoms, and 24 of 30 had gastrointestinal (GI) symptoms. Our results highlight the importance of a multidisciplinary approach, early malignancy detection, and wider awareness of inherited disorders. This actively accruing, longitudinal study will genotype and phenotype more patients with FPDMM, which may lead to a better understanding of the disease pathogenesis and clinical course, which may then inform preventive and therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT03854318.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Thrombocytopenia , Adult , Humans , Child , Core Binding Factor Alpha 2 Subunit/genetics , Longitudinal Studies , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/complications , Thrombocytopenia/genetics , Myeloproliferative Disorders/complications , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Hematologic Neoplasms/complications
10.
Int J Biol Macromol ; 253(Pt 7): 127076, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37769780

ABSTRACT

Biodegradable, biomass derived kombucha cellulose films with increased mechanical strength from 9.98 MPa to 18.18 MPa were prepared by vortex fluidic device (VFD) processing. VFD processing not only reduced the particle size of kombucha cellulose from approximate 2 µm to 1 µm, but also reshaped its structure from irregular to round. The increased mechanical strength of these polysaccharide-derived films is the result of intensive micromixing and high shear stress of a liquid thin film in a VFD. This arises from the incorporation at the micro-structural level of uniform, unidirectional strings of kombucha cellulose hydrolysates, which resulted from the topological fluid flow in the VFD. The biodegradability of the VFD generated polymer films was not compromised relative to traditionally generated films. Both films were biodegraded within 5 days.


Subject(s)
Alginates , Cellulose , Agar/chemistry , Cellulose/chemistry , Biomass , Physical Phenomena
11.
Blood ; 141(20): 2520-2536, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36735910

ABSTRACT

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Subject(s)
Proteomics , Spermidine , Humans , Spermidine/metabolism , Peptide Initiation Factors/genetics , Cell Differentiation , Eukaryotic Translation Initiation Factor 5A
12.
ChemSusChem ; 16(3): e202201943, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36478181

ABSTRACT

Covalent organic frameworks (COFs) have recently emerged as prospective photoactive materials with noble Pt as a cocatalyst for photocatalytic hydrogen evolution. In this work, a series of SH-group-functionalized covalent organic frameworks, TpPa-1-SH-X, is prepared by reaction of p-phenylenediamine (Pa) and 1,3,5-triformylphloroglucinol (Tp) with p-NH2 C6 H4 SH as a modulating agent. The reaction of TpPa-1-SH-X with NiII acetylacetonate Ni(acac)2 gave nickel thiolate-immobilized TpPa-1 (TpPa-1-SNi-X). The highest hydrogen evolution rate was 10.87 mmol h-1 g-1 , which was an enhancement of 16.47, 3.83, and 1.84 times than that of the parent TpPa-1, covalent-bond-free [(p-NH2 C6 H4 S)2 Ni]n /TpPa-1-SH-10, and 3 wt % Pt-deposited TpPa-1, respectively. This enhanced photocatalytic hydrogen evolution is ascribed to enhanced crystallinity, the use of NiII thiolate as a cocatalyst and covalent bonding between the cocatalyst and TpPa-1.

13.
Inorg Chem ; 61(50): 20227-20231, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36458998

ABSTRACT

A three-dimensional (3D) metal-organic framework (MOF) of [Et2NH2]2[Cd5(BTB)4(DEF)2]·4.75DEF (1; H3BTB = benzene-1,3,5-tribenzoic acid and DEF = N,N'-diethylformamide) sustained by symmetrical Z-shaped Cd5 secondary building units (SBUs) with an intrinsically metastable host framework has been prepared and characterized. Upon gentle vacuum (800 Pa) at 50 °C, some encapsulated DEF solvates are released, leading to pore-shape changes and Cd2+ coordination geometry distortion. This is followed by DEF solvate migration to only one end of the SBU with concomitant symmetry breaking. Additional time under vacuum promoted further structural distortion and topology changes as authenticated by single-crystal X-ray diffraction studies. This work was initially inspired by unusual gas adsorption isotherms and points to the potentially complicated, nonspectator role of coordinative solvents such as DEF during MOF activation.

14.
Leukemia ; 36(9): 2328-2337, 2022 09.
Article in English | MEDLINE | ID: mdl-35896822

ABSTRACT

Predictors, genetic characteristics, and long-term outcomes of patients with SAA who clonally evolved after immunosuppressive therapy (IST) were assessed. SAA patients were treated with IST from 1989-2020. Clonal evolution was categorized as "high-risk" (overt myeloid neoplasm [meeting WHO criteria for dysplasia, MPN or acute leukemia] or isolated chromosome-7 abnormality/complex karyotype without dysplasia or overt myeloid neoplasia) or "low-risk" (non-7 or non-complex chromosome abnormalities without morphological evidence of dysplasia or myeloid neoplasia). Univariate and multivariate analysis using Fine-Gray competing risk regression model determined predictors. Long-term outcomes included relapse, overall survival (OS) and hematopoietic stem cell transplant (HSCT). Somatic mutations in myeloid cancer genes were assessed in evolvers and in 407 patients 6 months after IST. Of 663 SAA patients, 95 developed clonal evolution. Pre-treatment age >48 years and ANC > 0.87 × 109/L were strong predictors of high-risk evolution. OS was 37% in high-risk clonal evolution by 5 years compared to 94% in low-risk. High-risk patients who underwent HSCT had improved OS. Eltrombopag did not increase high-risk evolution. Splicing factors and RUNX1 somatic variants were detected exclusively at high-risk evolution; DNMT3A, BCOR/L1 and ASXL1 were present in both. RUNX1, splicing factors and ASXL1 somatic mutations detected at 6 months after IST predicted high-risk evolution.


Subject(s)
Anemia, Aplastic , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Clonal Evolution , Core Binding Factor Alpha 2 Subunit , Humans , Immunosuppression Therapy , Immunosuppressive Agents , Middle Aged , RNA Splicing Factors
15.
Chem Commun (Camb) ; 58(49): 6942-6945, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35640157

ABSTRACT

Introducing 2,3-dimethyl-1H-imidazol-3-ium iodide (Dmim) as a monodentate ligand during the preparation of ZIF-8 yields ZIF-8 + (50) and ZIF-8 + (38) with cationic 'missing linker' defects. ZIF-8 + (38) adsorbs 125I2 and the resulting radioactive host-guest complex exhibits in vitro cytotoxicity comparable to that of Na125I against colon cancer cell line CT26.


Subject(s)
Colonic Neoplasms , Zeolites , Cations , Colonic Neoplasms/radiotherapy , Humans , Iodine Radioisotopes , Zeolites/pharmacology
16.
Pediatr Qual Saf ; 7(2): e545, 2022.
Article in English | MEDLINE | ID: mdl-35369412

ABSTRACT

Meaningful engagement in quality improvement (QI) projects by trainees is often challenging. A fellow-led QI project aimed to improve adherence to a blood culture clinical decision algorithm and reduce unnecessary cultures in pediatric oncology inpatients. Methods: We visualized preintervention rates of blood cultures drawn on pediatric oncology inpatients using a control chart. Following the introduction of the algorithm to our division, an Ishikawa fishbone diagram of cause-and-effect identified two areas for improvement: prescriber education on the algorithm and targeted feedback on its use. We developed two interventions to support algorithm awareness and use: (1) bundled educational interventions and (2) targeted chart review and feedback. Fellows reviewed >750 blood culture episodes and adjudicated each as "adherent" or "nonadherent" to the algorithm. In addition, fellows provided direct feedback to prescribers regarding nonadherent episodes and discussed strategies for algorithm adherence. Results: Blood culture rates in preintervention, intervention, and follow-up periods were 33.35, 25.24, and 22.67 cultures/100 patient-days, respectively. The proportion of nonadherent culture episodes decreased from 47.14% to 11.11%. The use of the algorithm did not prolong the time to cultures drawn on patients with new fever. Seventy-five percent of fellows provided feedback to inpatient teams on algorithm use. Following this project, trainees reported feeling more qualified to apply QI principles to patient care. Conclusions: Implementation of a clinical decision algorithm reduced the rate of cultures drawn on pediatric oncology inpatients. Fellow-led education of the care team decreased the proportion of nonadherent culture episodes and provided active engagement in QI.

17.
Blood ; 139(23): 3439-3449, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35349664

ABSTRACT

We follow a patient with Diamond-Blackfan anemia (DBA) mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly, mosaicism was unchanged, suggesting that both mutant and normal cells responded. When EPAG was withheld, her anemia returned. In addition to expanding hematopoietic stem/progenitor cells, EPAG aggressively chelates iron. Because DBA anemia, at least in part, results from excessive intracellular heme leading to ferroptotic cell death, we hypothesized that the excess heme accumulating in ribosomal protein-deficient erythroid precursors inhibited the growth of adjacent genetically normal precursors, and that the efficacy of EPAG reflected its ability to chelate iron, limit heme synthesis, and thus limit toxicity in both mutant and normal cells. To test this, we studied Rpl11 haploinsufficient (DBA) mice and mice chimeric for the cytoplasmic heme export protein, FLVCR. Flvcr1-deleted mice have severe anemia, resembling DBA. Mice transplanted with ratios of DBA to wild-type marrow cells of 50:50 are anemic, like our DBA patient. In contrast, mice transplanted with Flvcr1-deleted (unable to export heme) and wild-type marrow cells at ratios of 50:50 or 80:20 have normal numbers of red cells. Additional studies suggest that heme exported from DBA erythroid cells might impede the nurse cell function of central macrophages of erythroblastic islands to impair the maturation of genetically normal coadherent erythroid cells. These findings have implications for the gene therapy of DBA and may provide insights into why del(5q) myelodysplastic syndrome patients are anemic despite being mosaic for chromosome 5q deletion and loss of RPS14.


Subject(s)
Anemia, Diamond-Blackfan , Anemia , Anemia/pathology , Anemia, Diamond-Blackfan/metabolism , Animals , Chromosome Deletion , Erythroid Cells/metabolism , Erythropoiesis/genetics , Female , Heme/metabolism , Humans , Iron/metabolism , Mice , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
18.
Am J Hematol ; 97(6): 791-801, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312200

ABSTRACT

Eltrombopag (EPAG) has been approved for the treatment of aplastic anemia and for immune thrombocytopenia, and a subset of patients require long-term therapy. Due to polyvalent cation chelation, prolonged therapy leads to previously underappreciated iron depletion. We conducted a retrospective review of patients treated at the NIH for aplastic anemia, myelodysplastic syndrome, and unilineage cytopenias, comparing those treated with EPAG to a historical cohort treated with immunosuppression without EPAG. We examined iron parameters, duration of therapy, response assessment, relapse rates, and common demographic parameters. We included 521 subjects treated with (n = 315) or without EPAG (n = 206) across 11 studies with multiyear follow-up (3.6 vs. 8.5 years, respectively). Duration of EPAG exposure correlated with ferritin reduction (p = 4 × 10-14 ) regardless of response, maximum dose, or degree of initial iron overload. Clearance followed first-order kinetics with faster clearance (half-life 15.3 months) compared with historical responders (47.5 months, p = 8 × 10-10 ). Risk of iron depletion was dependent upon baseline ferritin and duration of therapy. Baseline ferritin did not correlate with response of marrow failure to EPAG or to relapse risk, and timing of iron clearance did not correlate with disease response. In conclusion, EPAG efficiently chelates total body iron comparable to clinically available chelators. Prolonged use can deplete iron and ultimately lead to iron-deficiency anemia mimicking relapse, responsive to iron supplementation.


Subject(s)
Anemia, Aplastic , Iron Overload , Pancytopenia , Thrombocytopenia , Anemia, Aplastic/drug therapy , Benzoates/adverse effects , Ferritins , Humans , Hydrazines , Iron/therapeutic use , Iron Overload/chemically induced , Iron Overload/etiology , Pancytopenia/chemically induced , Pyrazoles , Recurrence , Thrombocytopenia/chemically induced
19.
Bioessays ; 44(4): e2100269, 2022 04.
Article in English | MEDLINE | ID: mdl-35147231

ABSTRACT

Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.


Subject(s)
Protein Biosynthesis , Ribosomes , Codon, Terminator/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism
20.
Polymers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054638

ABSTRACT

Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C-C cross-coupling of secondary and primary alcohols to give ß-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL