Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Structure ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38490206

ABSTRACT

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328042

ABSTRACT

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

3.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38358351

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Subject(s)
Data Curation , Cryoelectron Microscopy/methods
4.
ArXiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38076521

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

6.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420884

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Subject(s)
Artificial Intelligence , Databases, Protein , Proteins , Machine Learning , Protein Conformation , Proteins/chemistry , Reproducibility of Results
7.
Biophys Rev ; 14(6): 1281-1301, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36474933

ABSTRACT

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

8.
Biomolecules ; 12(10)2022 10 04.
Article in English | MEDLINE | ID: mdl-36291635

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.


Subject(s)
Computational Biology , Proteins , Humans , Protein Conformation , Databases, Protein , Computational Biology/methods , Proteins/chemistry , Students
9.
Protein Sci ; 31(12): e4482, 2022 12.
Article in English | MEDLINE | ID: mdl-36281733

ABSTRACT

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.


Subject(s)
Computational Biology , Proteins , Humans , Protein Conformation , Databases, Protein , Proteins/chemistry , Computational Biology/methods , Macromolecular Substances/chemistry
10.
J Mol Biol ; 434(11): 167599, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35460671

ABSTRACT

PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.


Subject(s)
Computational Biology , Crystallography , Databases, Protein , Software , Macromolecular Substances/chemistry , Molecular Biology , Protein Conformation , Semantics
11.
Structure ; 30(2): 252-262.e4, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35026162

ABSTRACT

More than 70% of the experimentally determined macromolecular structures in the Protein Data Bank (PDB) contain small-molecule ligands. Quality indicators of ∼643,000 ligands present in ∼106,000 PDB X-ray crystal structures have been analyzed. Ligand quality varies greatly with regard to goodness of fit between ligand structure and experimental data, deviations in bond lengths and angles from known chemical structures, and inappropriate interatomic clashes between the ligand and its surroundings. Based on principal component analysis, correlated quality indicators of ligand structure have been aggregated into two largely orthogonal composite indicators measuring goodness of fit to experimental data and deviation from ideal chemical structure. Ranking of the composite quality indicators across the PDB archive enabled construction of uniformly distributed composite ranking score. This score is implemented at RCSB.org to compare chemically identical ligands in distinct PDB structures with easy-to-interpret two-dimensional ligand quality plots, allowing PDB users to quickly assess ligand structure quality and select the best exemplars.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Small Molecule Libraries/pharmacology , Databases, Protein , Ligands , Models, Molecular , Protein Conformation
12.
Protein Sci ; 31(1): 187-208, 2022 01.
Article in English | MEDLINE | ID: mdl-34676613

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.


Subject(s)
Computational Biology/history , Databases, Protein/history , User-Computer Interface , Anniversaries and Special Events , History, 20th Century , History, 21st Century
13.
Glycobiology ; 31(9): 1204-1218, 2021 09 20.
Article in English | MEDLINE | ID: mdl-33978738

ABSTRACT

Since 1971, the Protein Data Bank (PDB) has served as the single global archive for experimentally determined 3D structures of biological macromolecules made freely available to the global community according to the FAIR principles of Findability-Accessibility-Interoperability-Reusability. During the first 50 years of continuous PDB operations, standards for data representation have evolved to better represent rich and complex biological phenomena. Carbohydrate molecules present in more than 14,000 PDB structures have recently been reviewed and remediated to conform to a new standardized format. This machine-readable data representation for carbohydrates occurring in the PDB structures and the corresponding reference data improves the findability, accessibility, interoperability and reusability of structural information pertaining to these molecules. The PDB Exchange MacroMolecular Crystallographic Information File data dictionary now supports (i) standardized atom nomenclature that conforms to International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) recommendations for carbohydrates, (ii) uniform representation of branched entities for oligosaccharides, (iii) commonly used linear descriptors of carbohydrates developed by the glycoscience community and (iv) annotation of glycosylation sites in proteins. For the first time, carbohydrates in PDB structures are consistently represented as collections of standardized monosaccharides, which precisely describe oligosaccharide structures and enable improved carbohydrate visualization, structure validation, robust quantitative and qualitative analyses, search for dendritic structures and classification. The uniform representation of carbohydrate molecules in the PDB described herein will facilitate broader usage of the resource by the glycoscience community and researchers studying glycoproteins.


Subject(s)
Carbohydrates , Proteins , Carbohydrates/chemistry , Databases, Protein , Proteins/chemistry
15.
Structure ; 29(4): 393-400.e1, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33657417

ABSTRACT

The Worldwide Protein Data Bank (wwPDB) has provided validation reports based on recommendations from community Validation Task Forces for structures in the PDB since 2013. To further enhance validation of small molecules as recommended from the 2016 Ligand Validation Workshop, wwPDB, Global Phasing Ltd., and the Noguchi Institute, recently formed a public/private partnership to incorporate some of their software tools into the wwPDB validation package. Augmented wwPDB validation report features include: two-dimensional (2D) diagrams of small-molecule ligands and carbohydrates, highlighting geometric validation outcomes; 2D topological diagrams of oligosaccharides present in branched entities generated using 2D Symbol Nomenclature for Glycan representation; and views of 3D electron density maps for ligands and carbohydrates, illustrating the goodness-of-fit between the atomic structure and experimental data (X-ray crystallographic structures only). These improvements will impact confidence in ligand conformation and ligand-macromolecular interactions that will aid in understanding biochemical function and contribute to small-molecule drug discovery.


Subject(s)
Carbohydrates/chemistry , Databases, Protein/standards , Molecular Docking Simulation/methods , Proteomics/methods , Small Molecule Libraries/chemistry , Cheminformatics/methods , Databases, Chemical/standards , Humans , Ligands , Protein Binding , Proteome/chemistry , Proteome/metabolism
16.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33211854

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Subject(s)
Computational Biology/methods , Databases, Protein , Macromolecular Substances/chemistry , Protein Conformation , Proteins/chemistry , Bioengineering/methods , Biomedical Research/methods , Biotechnology/methods , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Macromolecular Substances/metabolism , Pandemics , Proteins/genetics , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Software , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
17.
Protein Sci ; 29(1): 52-65, 2020 01.
Article in English | MEDLINE | ID: mdl-31531901

ABSTRACT

Analyses of publicly available structural data reveal interesting insights into the impact of the three-dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G-protein-coupled receptors, voltage-gated ion channels, ligand-gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic-level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open-access, digital-data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010-2016. We review user-driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure-guided drug discovery for challenging targets (e.g., integral membrane proteins).


Subject(s)
Computational Biology/methods , Databases, Protein , Proteins/chemistry , Crystallography , Drug Discovery , Magnetic Resonance Spectroscopy , Microscopy, Electron , Protein Conformation , User-Computer Interface
20.
Structure ; 25(12): 1916-1927, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29174494

ABSTRACT

The Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities. The reports provide useful metrics with which depositors can evaluate the quality of the experimental data, the structural model, and the fit between them. The validation module is also available as a stand-alone web server and as a programmatically accessible web service. A growing number of journals require the official wwPDB validation reports (produced at biocuration) to accompany manuscripts describing macromolecular structures. Upon public release of the structure, the validation report becomes part of the public PDB archive. Geometric quality scores for proteins in the PDB archive have improved over the past decade.


Subject(s)
Databases, Protein/standards , Validation Studies as Topic , Sequence Analysis, Protein/methods , Sequence Analysis, Protein/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...