Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Sci Data ; 9(1): 443, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879373

ABSTRACT

The dataset comprises primary data for the concentration of 29 mineral micronutrients in cereal grains and up to 84 soil chemistry properties from GeoNutrition project surveys in Ethiopia and Malawi. The work provided insights on geospatial variation in the micronutrient concentration in staple crops, and the potential influencing soil factors. In Ethiopia, sampling was conducted in Amhara, Oromia, and Tigray regions, during the late-2017 and late-2018 harvest seasons. In Malawi, national-scale sampling was conducted during the April-June 2018 harvest season. The concentrations of micronutrients in grain were measured using inductively coupled plasma mass spectrometry (ICP-MS). Soil chemistry properties reported include soil pH; total soil nitrogen; total soil carbon (C); soil organic C; effective cation exchange capacity and exchangeable cations; a three-step sequential extraction scheme for the fractionation of sulfur and selenium; available phosphate; diethylenetriaminepentaacetic acid (DTPA)-extractable trace elements; extractable trace elements using 0.01 M Ca(NO3)2 and 0.01 M CaCl2; and isotopically exchangeable Zn. These data are reported here according to FAIR data principles to enable users to further explore agriculture-nutrition linkages.

2.
Sci Rep ; 12(1): 7986, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568698

ABSTRACT

Dietary zinc (Zn) deficiency is widespread globally, and in particular among people in sub-Saharan Africa (SSA). In Malawi, dietary sources of Zn are dominated by maize and spatially dependent variation in grain Zn concentration, which will affect dietary Zn intake, has been reported at distances of up to ~ 100 km. The aim of this study was to identify potential soil properties and environmental covariates which might explain this longer-range spatial variation in maize grain Zn concentration. Data for maize grain Zn concentrations, soil properties, and environmental covariates were obtained from a spatially representative survey in Malawi (n = 1600 locations). Labile and non-labile soil Zn forms were determined using isotopic dilution methods, alongside conventional agronomic soil analyses. Soil properties and environmental covariates as potential predictors of the concentration of Zn in maize grain were tested using a priori expert rankings and false discovery rate (FDR) controls within the linear mixed model (LMM) framework that informed the original survey design. Mean and median grain Zn concentrations were 21.8 and 21.5 mg kg-1, respectively (standard deviation 4.5; range 10.0-48.1). A LMM for grain Zn concentration was constructed for which the independent variables: soil pH(water), isotopically exchangeable Zn (ZnE), and diethylenetriaminepentaacetic acid (DTPA) extractable Zn (ZnDTPA) had predictive value (p < 0.01 in all cases, with FDR controlled at < 0.05). Downscaled mean annual temperature also explained a proportion of the spatial variation in grain Zn concentration. Evidence for spatially dependent variation in maize grain Zn concentrations in Malawi is robust within the LMM framework used in this study, at distances of up to ~ 100 km. Spatial predictions from this LMM provide a basis for further investigation of variations in the contribution of staple foods to Zn nutrition, and where interventions to increase dietary Zn intake (e.g. biofortification) might be most effective. Other soil and landscape factors influencing spatially dependent variation in maize grain Zn concentration, along with factors operating over shorter distances such as choice of crop variety and agronomic practices, require further exploration beyond the scope of the design of this survey.


Subject(s)
Soil , Zinc , Edible Grain/chemistry , Humans , Malawi , Minerals , Pentetic Acid , Zea mays , Zinc/analysis
3.
Parasitol Res ; 120(6): 2135-2148, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33991246

ABSTRACT

Habitat loss, climate change, environmental contaminants, and parasites and pathogens are among the main factors thought to act singly or together in causing amphibian declines. We tested for combined effects of neonicotinoid pesticides and parasites (versus parasites-only) on mortality, growth, and white blood cell profiles of a model amphibian: the northern leopard frog (Rana pipiens). We first exposed infectious stages of frog trematodes (cercariae of Echinostoma spp.) to low and high concentrations of thiamethoxam or clothianidin versus water-only controls. There were no differences in survival of trematode cercariae between treatments. For the main experiment, we exposed tadpoles to clean water versus high concentrations of clothianidin or thiamethoxam for 2 weeks and added trematode cercariae to all tanks after 1 week. Exposure of tadpoles and parasites to high concentrations of thiamethoxam or clothianidin did not affect parasite infection success. Tadpole survival was not different between treatments before or after parasite addition and there were no significant differences in tadpole snout-to-vent lengths or developmental stages between treatments. Tadpoles exposed to thiamethoxam + parasites had smaller widths than parasite-only tadpoles, whereas tadpoles exposed to clothianidin + parasites had higher eosinophil to leukocyte ratios compared to parasite-only tadpoles. Tadpoles of both neonicotinoid + parasite treatments had significantly lower monocyte to leukocyte ratios relative to parasite-only tadpoles. High concentrations of neonicotinoid combined with parasites appear to influence tadpole immune function important for further defense against parasites and pathogens. This work highlights the need for more holistic approaches to ecotoxicity studies, using multiple stressors.


Subject(s)
Blood Cells/drug effects , Neonicotinoids/toxicity , Pesticides/toxicity , Trematoda/pathogenicity , Animals , Blood Cell Count , Blood Cells/pathology , Cercaria/drug effects , Cercaria/pathogenicity , Echinostoma/pathogenicity , Ecotoxicology , Larva/drug effects , Larva/immunology , Larva/parasitology , Rana pipiens , Trematoda/drug effects
4.
Nature ; 594(7861): 71-76, 2021 06.
Article in English | MEDLINE | ID: mdl-34012114

ABSTRACT

Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan Africa1-5, where access to sufficient food from plant and animal sources that is rich in micronutrients (vitamins and minerals) is limited due to socioeconomic and geographical reasons4-6. Here we report the micronutrient composition (calcium, iron, selenium and zinc) of staple cereal grains for most of the cereal production areas in Ethiopia and Malawi. We show that there is geospatial variation in the composition of micronutrients that is nutritionally important at subnational scales. Soil and environmental covariates of grain micronutrient concentrations included soil pH, soil organic matter, temperature, rainfall and topography, which were specific to micronutrient and crop type. For rural households consuming locally sourced food-including many smallholder farming communities-the location of residence can be the largest influencing factor in determining the dietary intake of micronutrients from cereals. Positive relationships between the concentration of selenium in grain and biomarkers of selenium dietary status occur in both countries. Surveillance of MNDs on the basis of biomarkers of status and dietary intakes from national- and regional-scale food-composition data1-7 could be improved using subnational data on the composition of grain micronutrients. Beyond dietary diversification, interventions to alleviate MNDs, such as food fortification8,9 and biofortification to increase the micronutrient concentrations in crops10,11, should account for geographical effects that can be larger in magnitude than intervention outcomes.


Subject(s)
Edible Grain/chemistry , Nutrients/analysis , Nutritive Value , Agriculture , Calcium/analysis , Diet/statistics & numerical data , Ethiopia , Humans , Iron/analysis , Malawi , Micronutrients/analysis , Selenium/analysis , Surveys and Questionnaires , Triticum/chemistry , Zinc/analysis
5.
Environ Geochem Health ; 43(1): 361-374, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32965604

ABSTRACT

Iodine deficiency disorders (IDD) in sub-Saharan African countries are related to low dietary I intake and generally combatted through salt iodisation. Agronomic biofortification of food crops may be an alternative approach. This study assessed the effectiveness of I biofortification of green vegetables (Brassica napus L and Amaranthus retroflexus L.) grown in tropical soils with contrasting chemistry and fertility. Application rates of 0, 5 and 10 kg ha-1 I applied to foliage or soil were assessed. Leaves were harvested fortnightly for ~ 2 months after I application before a second crop was grown to assess the availability of residual soil I. A separate experiment was used to investigate storage of I within the plants. Iodine concentration and uptake in sequential harvests showed a sharp drop within 28 days of I application in all soil types for all I application levels and methods. This rapid decline likely reflects I fixation in the soil. Iodine biofortification increased I uptake and concentration in the vegetables to a level useful for increasing dietary I intake and could be a feasible way to reduce IDD in tropical regions. However, biofortification of green vegetables which are subject to multiple harvests requires repeated I applications.


Subject(s)
Fertilizers/analysis , Food, Fortified/analysis , Iodine/analysis , Soil/chemistry , Vegetables/chemistry , Biofortification , Biological Availability , Deficiency Diseases/prevention & control , Iodine/deficiency , Plant Leaves/classification , Plant Leaves/growth & development , Plant Leaves/metabolism , Vegetables/classification , Vegetables/growth & development , Vegetables/metabolism
6.
Chemosphere ; 258: 127246, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535442

ABSTRACT

Uranium may pose a hazard to ecosystems and human health due to its chemotoxic and radiotoxic properties. The long half-life of many U isotopes and their ability to migrate raise concerns over disposal of radioactive wastes. This work examines the long-term U bioavailability in aerobic soils following direct deposition or transport to the surface and addresses two questions: (i) to what extent do soil properties control the kinetics of U speciation changes in soils and (ii) over what experimental timescales must U reaction kinetics be measured to reliably predict long-term of impact in the terrestrial environment? Soil microcosms spiked with soluble uranyl were incubated for 1.7 years. Changes in UVI fractionation were periodically monitored by soil extractions and isotopic dilution techniques, shedding light on the binding strength of uranyl onto the solid phase. Uranyl sorption was rapid and strongly buffered by soil Fe oxides, but UVI remained reversibly held and geochemically reactive. The pool of uranyl species able to replenish the soil solution through several equilibrium reactions is substantially larger than might be anticipated from typical chemical extractions and remarkably similar across different soils despite contrasting soil properties. Modelled kinetic parameters indicate that labile UVI declines very slowly, suggesting that the processes and transformations transferring uranyl to an intractable sink progress at a slow rate regardless of soil characteristics. This is of relevance in the context of radioecological assessments, given that soil solution is the key reservoir for plant uptake.


Subject(s)
Environmental Monitoring/methods , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Uranium/analysis , Adsorption , Biological Availability , Ecosystem , Kinetics , Soil Pollutants, Radioactive/chemistry , Solubility , United Kingdom , Uranium/chemistry
7.
Sci Total Environ ; 733: 139231, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32446063

ABSTRACT

Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated by prior evidence of selenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including Se concentration measured in different extractants. Predictive models for concentration of Se in the respective grains were developed, and the predicted values, along with observed concentrations in the two grains were represented by a multivariate linear mixed model in which selected covariates, derived from remote sensor observations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment procedure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration in both grains were well-characterized by the prediction error variances obtained from the model. The predictions were displayed as maps, and their uncertainty was characterized by computing the probability that the true concentration of Se in grain would be such that a standard serving would not provide the recommended daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. Such information could be used to target effective interventions to address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients and crops in similar settings.


Subject(s)
Selenium , Edible Grain , Ethiopia , Soil , Triticum
8.
Proc Nutr Soc ; : 1-11, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32264979

ABSTRACT

Selenium (Se) is an essential element for human health. However, our knowledge of the prevalence of Se deficiency is less than for other micronutrients of public health concern such as iodine, iron and zinc, especially in sub-Saharan Africa (SSA). Studies of food systems in SSA, in particular in Malawi, have revealed that human Se deficiency risks are widespread and influenced strongly by geography. Direct evidence of Se deficiency risks includes nationally representative data of Se concentrations in blood plasma and urine as population biomarkers of Se status. Long-range geospatial variation in Se deficiency risks has been linked to soil characteristics and their effects on the Se concentration of food crops. Selenium deficiency risks are also linked to socio-economic status including access to animal source foods. This review highlights the need for geospatially-resolved data on the movement of Se and other micronutrients in food systems which span agriculture-nutrition-health disciplinary domains (defined as a GeoNutrition approach). Given that similar drivers of deficiency risks for Se, and other micronutrients, are likely to occur in other countries in SSA and elsewhere, micronutrient surveillance programmes should be designed accordingly.

9.
J Environ Radioact ; 212: 106131, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31885365

ABSTRACT

To understand the dynamic mechanisms governing soil-to-plant transfer of selenium (Se), technetium-99 (99Tc) and iodine (I), a pot experiment was undertaken using 30 contrasting soils after spiking with 77Se, 99Tc and 129I, and incubating for 2.5 years. Two grass species (Agrostis capillaris and Lolium perenne) were grown under controlled conditions for 4 months with 3 cuts at approximately monthly intervals. Native (soil-derived) 78Se and127I, as well as spiked 77Se, 99Tc and 129I, were assayed in soil and plants by ICP-MS. The grasses exhibited similar behaviour with respect to uptake of all three elements. The greatest uptake observed was for 99Tc, followed by 77Se, with least uptake of 129I, reflecting the transformations and interactions with soil of the three isotopes. Unlike soil-derived Se and I, the available pools of 77Se, 99Tc and 129I were substantially depleted by plant uptake across the three cuts with lower concentrations observed in plant tissues in each subsequent cut. Comparison between total plant offtake and various soil species suggested that 77SeO42-, 99TcO4- and 129IO3-, in soluble and adsorbed fractions were the most likely plant-available species. A greater ratio of 127I/129I in the soil solid phase compared to the solution phase confirmed incomplete mixing of spiked 129I with native 127I in the soil, despite the extended incubation period, leading to poor buffering of the spiked available pools. Compared to traditional expressions of soil-plant transfer factor (TFtotal), a transfer factor (TFavailable) expressed using volumetric concentrations of speciated 'available' fractions of each element showed little variation with soil properties.


Subject(s)
Agrostis , Radiation Monitoring , Chemical Fractionation , Iodine , Lolium , Selenium , Soil , Soil Pollutants , Technetium
10.
Chemosphere ; 229: 41-50, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31071518

ABSTRACT

Element cycling in the terrestrial environment is heavily reliant upon processes that occur in soil solution. Here we present the first application of microdialysis to sample iodine from soil solution. In comparison to conventional soil solution extraction methods such as Rhizon™ samplers, centrifugation, and high-pressure squeezing, microdialysis can passively sample dissolved compounds from soil solution without altering the in-situ speciation of trace elements at realistic soil moisture conditions. In order to assess the suitability of microdialysis for sampling iodine, the permeability factors and effect of perfusion flowrate on I- and IO3- recovery was examined in stirred solutions. Furthermore, microdialysis was used to sample native soluble iodine at a range of water contents and iodine-enriched soils to investigate iodine soil dynamics. Total iodine concentrations were measured using ICP-MS. Inorganic species and the molecular weight distribution of organically bound iodine were determined by anion exchange and size exclusion chromatography (SEC) coupled to an ICP-MS, respectively. The most effective recovery rates in stirred solution were observed with the slowest perfusion flowrate yielding 66.2 ±â€¯7.1 and 70.5 ±â€¯7.1% for I- and IO3-, respectively. Microdialysis was proven to be capable of sampling dissolved iodine from the soil solution, which accounted for <2.5% of the total soil iodine and speciation followed the sequence: organic-I > I- > IO3-. The use of SEC coupled to (i) UV and (ii) ICP-MS analysis provided detail regarding the molecular weight distribution of dissolved org-I compounds. Dissolved org-I was detected with approximate molecular weights between 0.1 and 4.5 kDa. The results in this study show that microdialysis is a suitable technique for sampling dissolved iodine species from soils maintained at realistic moisture contents. In addition, inorganic iodine added to soils was predominately bound with relatively low molecular weight (<4.5 kDa) soluble organic matter.


Subject(s)
Iodine/chemistry , Mass Spectrometry/methods , Microdialysis/methods , Soil/chemistry
11.
Environ Geochem Health ; 41(5): 2145-2156, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30848410

ABSTRACT

Iodine is an essential micronutrient for human health; phytofortification is a means of improving humans' nutritional iodine status. However, knowledge of iodine uptake and translocation in plants remains limited. In this paper, plant uptake mechanisms were assessed in short-term experiments (24 h) using labelled radioisotopes; the speciation of iodine present in apoplastic and symplastic root solutions was determined by (HPLC)-ICP-QQQ-MS. Iodine storage was investigated in spinach (Spinacia oleracea L.) treated with I- and IO3-. Finally, translocation through the phloem to younger leaves was also investigated using a radioiodine (129I-) label. During uptake, spinach roots demonstrated the ability to reduce IO3- to I-. Once absorbed, iodine was present as org-I or I- with significantly greater concentrations in the apoplast than the symplast. Plants were shown to absorb similar concentrations of iodine applied as I- or IO3-, via the roots, grown in an inert growth substrate. We found that whilst leaves were capable of absorbing radioactively labelled iodine applied to a single leaf, less than 2% was transferred through the phloem to younger leaves. In this paper, we show that iodine uptake is predominantly passive (approximately two-thirds of total uptake); however, I- can be absorbed actively through the symplast. Spinach leaves can absorb iodine via foliar fertilisation, but translocation is severely limited. As such, foliar application is unlikely to significantly increase the iodine content, via phloem translocation, of fruits, grains or tubers.


Subject(s)
Iodine/metabolism , Spinacia oleracea/metabolism , Iodine Compounds/metabolism , Iodine Radioisotopes/metabolism , Plant Cells/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
12.
Environ Sci Process Impacts ; 20(2): 288-310, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29302664

ABSTRACT

Iodine is an essential micronutrient for human health: insufficient intake can have multiple effects on development and growth, affecting approximately 1.9 billion people worldwide. Previous reviews have focussed on iodine analysis in environmental and biological samples, however, no such review exists for the determination of iodine fractionation and speciation in soils. This article reviews the geodynamics of both stable 127I and the long-lived isotope 129I (t1/2 = 15.7 million years), alongside the analytical methods for determining iodine concentrations in soils, including consideration of sample preparation. The ability to measure total iodine concentration in soils has developed significantly from rudimentary spectrophotometric analysis methods to inductively coupled plasma mass spectrometry (ICP-MS). Analysis with ICP-MS has been reported as the best method for determining iodine concentrations in a range of environmental samples and soils due to developments in extraction procedures and sensitivity, with extremely good detection limits typically <µg L-1. The ability of ICP-MS to measure iodine and its capabilities to couple on-line separation tools has the significance to develop the understanding of iodine geodynamics. In addition, nuclear-related analysis and recent synchrotron light source analysis are discussed.


Subject(s)
Environmental Monitoring/methods , Iodine Compounds/analysis , Iodine/analysis , Soil/chemistry , Trace Elements/analysis , Humans , Kinetics , Limit of Detection , Mass Spectrometry , Spectrophotometry, Atomic
13.
Sci Total Environ ; 618: 460-468, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29136597

ABSTRACT

The current availability of Pb in Egyptian soils and associated plants were studied in 15 locations (n=159) that had been historically subjected to industrial and automobile Pb emissions. Isotopic dilution with enriched 204Pb was used to estimate the soil Pb labile pool (PbE); results showed that %PbE values were mostly <25% which is likely due to the alkaline nature of the soils. Nonetheless, lability of Pb was significantly higher in urban and industrial locations indicating greater reactivity of anthropogenic Pb in comparison to geogenic-Pb. A plot of 206Pb/207Pb vs 208Pb/207Pb showed that all soils were aligned close to a virtual binary line between two apparent end member signatures (petrol and geogenic-Pb) suggesting that they are the major sources of Pb in the Egyptian environment. Soils with greater Pb concentrations (urban and industrial locations) displayed a significantly greater ratio of labile petrol-Pb to labile geogenic-Pb in comparison to less-contaminated soils. However, this difference was marginal (±5%) suggesting that historically emitted petrol-Pb has substantially mixed with geogenic-Pb into a common pool as a result of prolonged contact with soil. The proportion of petrol-Pb in fruits and leaf vegetables was significantly (P<0.005) greater than that of the associated soils suggesting preferential uptake of the more labile petrol-Pb as opposed to the relatively immobile geogenic-Pb. However, it is also possible that the major source of Pb intake by Egyptian consumers is extraneous Pb dust enriched with petrol Pb rather than systematic Pb via roots uptake.

14.
Environ Pollut ; 231(Pt 2): 1529-1542, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28947320

ABSTRACT

Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-value as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables. Trace metal reactivity in urban soils depends on both soil properties and the original source material; the WHAM geochemical model predicts solubility using isotopically exchangeable metal as an input.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Urbanization , Chemical Fractionation , Cities , Isotopes/analysis , Metals, Heavy/chemistry , Models, Chemical , Predictive Value of Tests , Soil Pollutants/chemistry , Solubility , Trace Elements/chemistry , United Kingdom
15.
BMC Plant Biol ; 16(1): 214, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27716103

ABSTRACT

BACKGROUND: Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS: Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. CONCLUSIONS: High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.


Subject(s)
Brassica napus/anatomy & histology , Brassica napus/chemistry , Phenotype , Brassica napus/genetics , Crops, Agricultural , Genotype , Plant Leaves/chemistry , Plant Roots/anatomy & histology , Seeds/chemistry
16.
J Hazard Mater ; 320: 55-66, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27513370

ABSTRACT

Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of UVI from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20°C, including pH, initial concentration of UVI and contact time. Uranium (UVI) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH>7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of UVI within the biochar structure. Desorption experiments showed that UVI was only sparingly desorbable from the biochar with time and isotopic dilution with 233UVI confirmed the low, or time-dependent, lability of adsorbed 238UVI. Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.

17.
Naturwissenschaften ; 103(7-8): 59, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27352077

ABSTRACT

Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.


Subject(s)
Coleoptera/microbiology , Morganella morganii/metabolism , Phenol/metabolism , Sex Attractants/biosynthesis , Symbiosis/physiology , Tyrosine/metabolism , Animals , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Female , Male , Morganella morganii/genetics , Morganella morganii/isolation & purification , New Zealand , RNA, Ribosomal, 16S/genetics
18.
Chemosphere ; 155: 534-541, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27153236

ABSTRACT

Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg(-1)), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg(-1)). Crucially, we also determined isotopically exchangeable metal in the soil-extractant systems (EExt, mg kg(-1)). Thus 'EExt - EValue' quantifies the concentration of mobilised non-labile metal, while 'EExt - MExt' represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExtEValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies.


Subject(s)
Environmental Pollution/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Solid Phase Extraction/methods , Acetic Acid/chemistry , Cadmium/analysis , Calcium Chloride/chemistry , Copper/analysis , Edetic Acid/chemistry , Lead/analysis , Nickel/analysis , Nitric Acid/chemistry , United Kingdom , Zinc/analysis
19.
Chemosphere ; 157: 208-14, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27231879

ABSTRACT

The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 µg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing.


Subject(s)
Humic Substances/analysis , Iodine/chemistry , Soil Pollutants/chemistry , Iodates/chemistry , Iodides/chemistry , Iodine Radioisotopes/chemistry , Molecular Weight
20.
Sci Rep ; 5: 15251, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503697

ABSTRACT

The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg(-1) in maize grain, 0.008 mg kg(-1) in roots and tubers, but 0.155 mg kg(-1) in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg(-1). Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 µg d(-1) compared to an adult requirement of 150 µg d(-1). Despite low dietary-I intake from food, median UICs were 203 µg L(-1) with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 µg d(-1) based on consumption of 2 L d(-1).


Subject(s)
Diet , Iodine/administration & dosage , Humans , Malawi
SELECTION OF CITATIONS
SEARCH DETAIL
...