Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39074375

ABSTRACT

The detection of small molecules beyond glucose remains an ongoing challenge in the field of biomolecular sensing owing to their small size, diverse structures, and lack of alternative non-enzymatic sensing methods. Here, we present a new reagentless electrochemical approach for small molecule detection that involves directed movement of electroactive analytes through a self-assembled monolayer to an electrode surface. Using this method, we demonstrate detection of several physiologically relevant small molecules as well as the capacity for the system to operate in several biological fluids. We anticipate that this mechanism will further improve our capacity for small molecule measurement and provide a new generalizable monolayer-based technique for electrochemical assessment of various electroactive analytes.

2.
J Am Chem Soc ; 144(40): 18338-18349, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36173381

ABSTRACT

The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Electrodes , Humans , Nucleoproteins , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL