Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1384611, 2024.
Article in English | MEDLINE | ID: mdl-38808065

ABSTRACT

Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng. Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.


Subject(s)
Macrophages , Neisseria gonorrhoeae , Nutrients , Neisseria gonorrhoeae/immunology , Macrophages/microbiology , Macrophages/immunology , Humans , Gonorrhea/microbiology , Gonorrhea/immunology , Macrophage Activation , Host-Pathogen Interactions/immunology
2.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370795

ABSTRACT

Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng . Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.

3.
Transl Oncol ; 39: 101837, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984255

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS: RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS: We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFß, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS: The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.

4.
Front Mol Biosci ; 10: 1096326, 2023.
Article in English | MEDLINE | ID: mdl-36936987

ABSTRACT

The tumor microenvironment (TME) is the source of important cues that govern epithelial-to-mesenchymal transition (EMT) and facilitate the acquisition of aggressive traits by cancer cells. It is now recognized that EMT is not a binary program, and cancer cells rarely switch to a fully mesenchymal phenotype. Rather, cancer cells exist in multiple hybrid epithelial/mesenchymal (E/M) states responsible for cell population heterogeneity, which is advantageous for the ever-changing environment during tumor development and metastasis. How are these intermediate states generated and maintained is not fully understood. Here, we show that direct interaction between small cell lung carcinoma cells and lung fibroblasts induces a hybrid EMT phenotype in cancer cells in which several mesenchymal genes involved in receptor interaction with the extracellular matrix (ECM) and ECM remodeling are upregulated while epithelial genes such as E-cadherin remain unchanged or slightly increase. We also demonstrate that several core EMT-regulating transcription factors (EMT-TFs) are upregulated in cancer cells during direct contact with fibroblasts, as is Yes-associated protein (YAP1), a major regulator of the Hippo pathway. Further, we show that these changes are transient and reverse to the initial state once the interaction is disrupted. Altogether, our results provide evidence that tumor cells' direct contact with the fibroblasts in the TME initiates a signaling cascade responsible for hybrid E/M states of cancer cells. These hybrid states are maintained during the interaction and possibly contribute to therapy resistance and immune evasion, while interference with direct contact will result in slow recovery and switch to the initial states.

5.
Biomedicines ; 10(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36428475

ABSTRACT

Fusarochromanone is an experimental drug with unique and potent anti-cancer activity. Current cancer therapies often incorporate a combination of drugs to increase efficacy and decrease the development of drug resistance. In this study, we used drug combinations and cellular phenotypic screens to address important questions about FC101's mode of action and its potential therapeutic synergies in triple negative breast cancer (TNBC). We hypothesized that FC101's activity against TNBC is similar to the mTOR inhibitor, everolimus, because FC101 downregulates the phosphorylation of two mTOR substrates, S6K and S6. Since everolimus synergistically enhances the anti-cancer activities of two known EGFR inhibitors (erlotinib or lapatinib) in TNBC, we performed analogous studies with FC101. Phenotypic cellular assays helped assess whether FC101 acts similarly to everolimus, in both single and combination treatments with the two inhibitors. FC101 outperformed all other single treatments in both cell proliferation and viability assays. However, unlike everolimus, FC101 produced a sustained decrease in cell viability in drug washout studies. None of the other drugs were able to maintain comparable effects upon removal. Although we observed slightly additive effects when the TNBC cells were treated with FC101 and the two EGFR inhibitors, those effects were not truly synergistic in the manner displayed with everolimus.

6.
Nucleic Acids Res ; 32(19): 5721-31, 2004.
Article in English | MEDLINE | ID: mdl-15509868

ABSTRACT

Multiply damaged sites (MDSs) are generated in DNA by ionizing radiation. In vitro studies predict that base excision repair in cells will convert MDSs to lethal double strand breaks (DSBs) when two opposing base damages are situated >/=2 bp apart. If the lesions are situated immediately 5' or 3' to each other, repair is predicted to occur sequentially due to inhibition of the DNA glycosylase by a single strand break repair intermediate. In this study, we examined how the distance between two opposing lesions alters the mutation frequency of an 8-oxodG in an MDS, and whether repair generates DSBs and deletions in bacteria. The 8-oxodG mutation frequency declined in MutY-deficient bacteria when the opposing 8-oxodG was 6 bp away, and was similar to a single 8-oxodG when the lesions were separated by 14 bp. However, the number of deletions detected for the MDSs was equivalent to the undamaged sequence. Using a separate assay, MDSs consisting of two 8-oxodG or an 8-oxodG opposite a uracil were not converted to DSBs in the absence of DNA replication in wild-type and transcription-coupled repair-deficient bacteria. This is the first study showing that DSB-repair intermediates and deletions are not formed during repair of clustered 8-oxodGs in cells.


Subject(s)
DNA Damage , DNA Repair , Escherichia coli/genetics , Guanine/analogs & derivatives , Guanine/analysis , Point Mutation , DNA Replication , Gene Frequency , Luciferases/analysis , Plasmids/chemistry , Sequence Deletion , Transcription, Genetic
7.
DNA Repair (Amst) ; 2(6): 695-705, 2003 Jun 11.
Article in English | MEDLINE | ID: mdl-12767348

ABSTRACT

A multiply damaged site (MDS) is defined as > or =2 lesions within a distance of 10-15 base pairs (bp). MDS generated by ionizing radiation contain oxidative base damage, and in vitro studies have indicated that if the base damage is <3bp apart, repair of one lesion is inhibited until repair of the lesion in the opposite strand is completed. Inhibition of repair could result in an increase in the mutation frequency of the base damage. We have designed an assay to determine whether a closely opposed lesion causes an increase in adenine insertion opposite an 8-oxodG in bacteria. We have positioned the MDS (an 8-oxodG in the transcribed strand and a second 8-oxodG immediately 5' to this lesion in the non-transcribed strand) within the firefly luciferase coding region. During two rounds of replication, insertion of adenine opposite the 8-oxodG in the transcribed (T) or non-transcribed (NT) strand results in a translation termination codon at position 444 or 445, respectively. The truncated luciferase protein is inactive. We have generated double-stranded oligonucleotides that contain no damage, each single 8-oxodG or the MDS. Each double-stranded molecule was ligated into the reporter vector and the ligation products transformed into wild-type or Mut Y-deficient bacteria. The plasmid DNA was isolated and sequenced from colonies that did not express luciferase activity. In wild-type bacteria, we detected a translation stop at a frequency of 0.15% (codon 444) and 0.09% (codon 445) with a single 8-oxodG in the T or NT strand, respectively. This was enhanced approximately 3-fold when single lesions were replicated in Mut Y-deficient bacteria. Positioning an 8-oxodG in the T strand within the MDS enhanced the mutation frequency by approximately 2-fold in wild-type bacteria and 8-fold in Mut Y-deficient bacteria, while the mutation frequency of the 8-oxodG in the NT strand increased by 6-fold in Mut Y-deficient bacteria. This enhancement of mutation frequency supports the in vitro MDS studies, which demonstrated the inability of base excision repair to completely repair closely opposed lesions.


Subject(s)
DNA Damage , Escherichia coli/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Mutation , DNA Replication , Escherichia coli/metabolism , Genes, Reporter
SELECTION OF CITATIONS
SEARCH DETAIL
...