Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med ; 188(Suppl 6): 295-303, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948243

ABSTRACT

INTRODUCTION: Negative pressure wound therapy (NPWT) is utilized early after soft tissue injury to promote tissue granulation and wound contraction. Early post-injury transfers via aeromedical evacuation (AE) to definitive care centers may actually induce wound bacterial proliferation. However, the effectiveness of NPWT or instillation NPWT in limiting bacterial proliferation during post-injury AE has not been studied. We hypothesized that instillation NPWT during simulated AE would decrease bacterial colonization within simple and complex soft tissue wounds. METHODS: The porcine models were anesthetized before any experiments. For the simple tissue wound model, two 4-cm dorsal wounds were created in 34.9 ± 0.6 kg pigs and were inoculated with Acinetobacter baumannii (AB) or Staphylococcus aureus 24 hours before a 4-hour simulated AE or ground control. During AE, animals were randomized to one of the five groups: wet-to-dry (WTD) dressing, NPWT, instillation NPWT with normal saline (NS-NPWT), instillation NPWT with Normosol-R® (NM-NPWT), and RX-4-NPWT with the RX-4 system. For the complex musculoskeletal wound, hind-limb wounds in the skin, subcutaneous tissue, peroneus tertius muscle, and tibia were created and inoculated with AB 24 hours before simulated AE with WTD or RX-4-NPWT dressings. Blood samples were collected at baseline, pre-flight, and 72 hours post-flight for inflammatory cytokines interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor alpha. Wound biopsies were obtained at 24 hours and 72 hours post-flight, and the bacteria were quantified. Vital signs were measured continuously during simulated AE and at each wound reassessment. RESULTS: No significant differences in hemodynamics or serum cytokines were noted between ground or simulated flight groups or over time in either wound model. Simulated AE alone did not affect bacterial proliferation compared to ground controls. The simple tissue wound arm demonstrated a significant decrease in Staphylococcus aureus and AB colony-forming units at 72 hours after simulated AE using RX-4-NPWT. NS-NPWT during AE more effectively prevented bacterial proliferation than the WTD dressing. There was no difference in colony-forming units among the various treatment groups at the ground level. CONCLUSION: The hypoxic, hypobaric environment of AE did not independently affect the bacterial growth after simple tissue wound or complex musculoskeletal wound. RX-4-NPWT provided the most effective bacterial reduction following simulated AE, followed by NS-NPWT. Future research will be necessary to determine ideal instillation fluids, negative pressure settings, and dressing change frequency before and during AE.


Subject(s)
Air Ambulances , Negative-Pressure Wound Therapy , Soft Tissue Injuries , Wound Infection , Animals , Swine , Soft Tissue Injuries/therapy , Cytokines , Bandages , Wound Infection/prevention & control
2.
Epilepsia ; 62(7): 1689-1700, 2021 07.
Article in English | MEDLINE | ID: mdl-33997963

ABSTRACT

OBJECTIVE: Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS: Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS: In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE: We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.


Subject(s)
Anticonvulsants/toxicity , Behavior, Animal/drug effects , Folic Acid/therapeutic use , Neurotoxicity Syndromes/prevention & control , Neurotoxicity Syndromes/psychology , Valproic Acid/toxicity , Vitamins/therapeutic use , Zebrafish , Animals , Animals, Genetically Modified , Dietary Supplements , Embryonic Development/drug effects , Larva , Lighting , Mesencephalon/anatomy & histology , Mesencephalon/drug effects , Motor Neurons/drug effects , Neural Stem Cells/drug effects , Neural Tube Defects/chemically induced , Neurites/drug effects , Rhombencephalon/anatomy & histology , Rhombencephalon/drug effects , Valproic Acid/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...