Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med ; 120: 103326, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493584

ABSTRACT

This study involves the synthesis, characterization, and spectral photon counting CT (SPCCT) imaging of gold nanoparticles tailored for enhancing the contrast of small cancer lesions. We used the modified Turkevich method to produce thiol-capped gold nanoparticles (AuNPs) at different concentrations (20, 15, 10, 5, 2.5, 1.25, 0.6 mg/ml). We thoroughly characterized the AuNPs using Transmission Electron Microscopy (TEM), X-ray diffraction spectroscopy (XRD), Dynamic Light Scattering (DLS), and UV-visible absorption spectroscopy. To assess the AuNPs contrast enhancing performance, we designed and built a new material contrast detail phantom for CT imaging and determined the minimum detectable concentrations of AuNPs in simulated lesions of small diameters (1, 2, 3, and 5 mm). The synthesized AuNPs are spherical with an average size of approximately 20 ± 4 nm, with maximum UV absorption occurring at 527 nm wavelength, and exhibit a face-centered cubic structure of gold according to XRD analysis. The synthesized gold nanoparticles demonstrated high contrast in SPCCT, suggesting their potential as contrast agents for imaging cancer tissues. The AuNPs image contrast was directly proportional to the AuNPs concentration. We are the first to determine that the lowest visually distinguishable contrast was achieved at a gold concentration of 5 mg/ml for a 2 mm simulated lesion. For 1 mm size lesion the smallest visible concentration was 10 mg/ml. This newly developed phantom can be used for determining the minimal concentration required for various high-Z nanoparticles to produce detectable contrast in X-ray imaging for small-size simulated lesions.


Subject(s)
Metal Nanoparticles , Neoplasms , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Tomography, X-Ray Computed/methods , Phantoms, Imaging
2.
Eur Radiol ; 27(1): 384-392, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27165137

ABSTRACT

OBJECTIVES: To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. METHODS: We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. RESULTS: The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. CONCLUSIONS: Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. KEY POINTS: • Contrast-enhanced articular cartilage and subchondral bone can be distinguished using multi-energy CT. • Iodine as a marker of glycosaminoglycan content is quantifiable with multi-energy CT. • Multi-energy CT could track alterations in GAG content occurring in osteoarthritis.


Subject(s)
Cartilage, Articular/diagnostic imaging , Glycosaminoglycans/analysis , Iodine/pharmacokinetics , Osteoarthritis/diagnostic imaging , Tomography, X-Ray Computed/methods , Contrast Media/pharmacokinetics , Dissection , Humans , Osteoarthritis/pathology , Phantoms, Imaging , Tibia/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL