Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 226: 115664, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36913998

ABSTRACT

Metal-organic frameworks (MOFs) have recently garnered considerable attention among reticular compounds due to their unique physicochemical properties and applications in sensing toxic compounds. On the other hand, fluorometric sensing has been widely studied for food safety and environmental protection among the various sensing methods. Thus, designing MOF-based fluorescence sensors for specific detection of hazardous compounds, especially pesticides, are incessantly needed to keep up with the continuous demands for monitoring these environmental pollution. Herein, recent MOF-based platforms for pesticide fluorescence detection are deliberated owing to sensors' emission origins and in terms of their structural properties. The influences of different guest incorporation in MOFs on pesticide fluorescence detection are summarized, and the future developments of novel MOF composites such as polyoxometalate@MOFs (POMOF), carbon quantum dots@MOFs (CDs@MOF), and organic dye@MOF are prospected for fluorescence sensing of assorted pesticides with a focus on mechanistic insights of specific detection techniques in food safety and environmental protection.


Subject(s)
Metal-Organic Frameworks , Pesticides , Food Safety , Carbon , Coloring Agents , Environmental Pollution
2.
Food Chem Toxicol ; 164: 112964, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398449

ABSTRACT

A tripod organic compound, (4,4',4''-[1,3,5-Triazine-2,4,6-triyltris(oxy)] tribenzoic acid, TCPT), with donor triazine core and multiple fluorophore carboxylic motives, was prepared as an efficient ligand with high emission properties. The TCPT fluorescence emission properties as a chemical sensor were studied (λex = 370 nm) upon the addition of an appropriately diverse set of metal cations. The obtained results revealed the highly selective and efficient role of Cu2+ in quenching of TCPT, even with relevant interfering metal ions. The emission of TCPT was independent of the pH. The interaction of the sensor with Cu2+ and followed by absorption spectra and linear trend of the Stern-Volmer diagram, suggested a static quenching process. The density functional theory calculations were carried out to explore the identity of the electronic transition levels, HOMO-LUMO, and bandgap energies of TCPT. The linear range 1.00 × 10-7-1.00 × 10-6 M was obtained by fluorescence titration of a TCPT solution with Cu2+ ions at optimum conditions. The detection limit was calculated as 5.45 × 10-8 M from the established calibration of titration data. The effect of various ions was studied, and there was no significant interference from the studied metal ions. For the real sample analysis, trace levels of Cu2+ ions were successfully determined in the tomato.


Subject(s)
Solanum lycopersicum , Carboxylic Acids , Cations/chemistry , Copper/chemistry , Metals , Spectrometry, Fluorescence/methods , Triazines
SELECTION OF CITATIONS
SEARCH DETAIL
...