Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
FEBS Lett ; 598(4): 415-436, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38320753

ABSTRACT

Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Exons/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA , Nuclear Matrix-Associated Proteins/genetics
2.
Biology (Basel) ; 12(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37887017

ABSTRACT

Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.

3.
EMBO J ; 42(18): e112469, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37492926

ABSTRACT

Slower translation rates reduce protein misfolding. Such reductions in speed can be mediated by the presence of non-optimal codons, which allow time for proper folding to occur. Although this phenomenon is conserved from bacteria to humans, it is not known whether there are additional eukaryote-specific mechanisms which act in the same way. MicroRNAs (miRNAs), not present in prokaryotes, target both coding sequences (CDS) and 3' untranslated regions (UTR). Given their low suppressive efficiency, it has been unclear why miRNAs are equally likely to bind to a CDS. Here, we show that miRNAs transiently stall translating ribosomes, preventing protein misfolding with little negative effect on protein abundance. We first analyzed ribosome profiles and miRNA binding sites to examine whether miRNAs stall ribosomes. Furthermore, either global or specific miRNA deficiency accelerated ribosomes and induced aggregation of a misfolding-prone polypeptide reporter. These defects were rescued by slowing ribosomes using non-cleaving shRNAs as miRNA mimics. We finally show that proinsulin misfolding, associated with type II diabetes, was resolved by non-cleaving shRNAs. Our findings provide a eukaryote-specific mechanism of co-translational protein folding and a previously unknown mechanism of action to target protein misfolding diseases.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Humans , MicroRNAs/metabolism , Protein Biosynthesis , Eukaryota/genetics , Eukaryota/metabolism , Diabetes Mellitus, Type 2/metabolism , RNA, Messenger/genetics , Ribosomes/metabolism , Proteins/metabolism
5.
Biomolecules ; 13(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37238732

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventual death. Research from the past few decades has appreciated that ALS is not only a disease of the motor neurons but also a disease that involves systemic metabolic dysfunction. This review will examine the foundational research of understanding metabolic dysfunction in ALS and provide an overview of past and current studies in ALS patients and animal models, spanning from full systems to various metabolic organs. While ALS-affected muscle tissue exhibits elevated energy demand and a fuel preference switch from glycolysis to fatty acid oxidation, adipose tissue in ALS undergoes increased lipolysis. Dysfunctions in the liver and pancreas contribute to impaired glucose homeostasis and insulin secretion. The central nervous system (CNS) displays abnormal glucose regulation, mitochondrial dysfunction, and increased oxidative stress. Importantly, the hypothalamus, a brain region that controls whole-body metabolism, undergoes atrophy associated with pathological aggregates of TDP-43. This review will also cover past and present treatment options that target metabolic dysfunction in ALS and provide insights into the future of metabolism research in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Amyotrophic Lateral Sclerosis/metabolism , Neurodegenerative Diseases/metabolism , Motor Neurons/metabolism , Models, Animal , Glucose/metabolism
6.
Transl Psychiatry ; 12(1): 302, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906220

ABSTRACT

Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.


Subject(s)
Fear , Hippocampus , Animals , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/metabolism , Mice , Mice, Knockout , Stress, Psychological , Synaptic Transmission/physiology
7.
iScience ; 25(8): 104692, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35856033

ABSTRACT

The CaMKΙΙα-Cre mouse lines, possibly the most used Cre lines in neuroscience, have resulted in over 800 articles to date. Here, we demonstrate that the second most widely used CaMKΙΙα-Cre line, Tg(Camk2a-cre)2Gsc (or CamiCre), shows ectopic overexpression of synaptotagmin 2, the most efficient Ca2+ sensor for fast synchronous neurotransmitter release, in excitatory presynapses of Cre+ brains. Moreover, the upregulation of immediate-early genes and genes incorporated in bacterial artificial chromosome (BAC) transgenes, such as L-proline transporter Slc6a7, was found in Cre+ hippocampus. The copy number and integration site of the transgene are suggested to have caused the aberrant gene expression in Cre+ brains. Most importantly, CamiCre+ mice showed functional phenotypes, such as hyperactivity and enhanced associative learning, suggesting that neural activities are affected. These unexpected results suggest difficulties in interpreting results from studies using the CamiCre line and raise a warning of potential pitfalls in using Cre driver lines in general.

8.
APMIS ; 126(6): 477-485, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29924446

ABSTRACT

Chronic hepatitis C (CHC) is a major public health problem, especially in Egypt. Risk of hepatocellular carcinoma (HCC) development increases as hepatitis C virus (HCV)-related liver diseases progress. Smads act as substrates for the transforming growth factor-beta (TGF-ß) family of receptors. This study aims to assess hepatic expression of pSmad2/3 and Smad4 in CHC with different stages of fibrosis and grades of necro-inflammation as well as in HCC on top of CHC. This study was done on 33 core liver biopsies from patients with CHC (15 with early fibrosis and 18 with late fibrosis), 15 liver specimens from HCC cases on top of CHC, as well as five normal controls. pSmad2/3 and Smad4 show more immunopositivity, higher percentage of positive hepatocytes and stronger staining intensity in CHC with late fibrosis compared to early fibrosis. pSmad2/3 shows increase of the previous parameters in CHC with high grade activity than those with low activity. Smad4 shows increase of the previous parameters in HCC compared to CHC cases. pSmad2/3 and Smad4 can be used as diagnostic and/or prognostic markers for progression of HCV-related fibrosis to cirrhosis and further progression to HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Smad4 Protein/metabolism , Adult , Antibodies, Viral/blood , Antigens, Viral/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/virology , Case-Control Studies , Disease Progression , Female , Gene Expression Regulation , Hepacivirus/isolation & purification , Hepatitis C/diagnosis , Hepatitis C/genetics , Humans , Immunohistochemistry , Liver Cirrhosis/diagnosis , Liver Cirrhosis/virology , Liver Neoplasms/diagnosis , Liver Neoplasms/virology , Male , Middle Aged , Smad2 Protein/genetics , Smad3 Protein/genetics , Smad4 Protein/genetics , Young Adult
9.
Sci Rep ; 6: 30717, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27470322

ABSTRACT

Sorafenib (SOR) is the first-line treatment for hepatocellular carcinoma (HCC). However, its use is hindered by the recently expressed safety concerns. One approach for reducing SOR toxicity is to use lower doses in combination with other less toxic agents. Biochanin-A (Bio-A), a promising isoflavone, showed selective toxicity to liver cancer cells. We postulated that combining SOR and Bio-A could be synergistically toxic towards HCC cells. We further evaluated the underlying mechanism. Cytotoxicity assay was performed to determine the IC50 of Bio-A and SOR in HepG2, SNU-449 and Huh-7 cells. Then, combination index in HepG2 was evaluated using Calcusyn showing that the concurrent treatment with lower concentrations of SOR and Bio-A synergistically inhibited cell growth. Our combination induced significant arrest in pre-G and G0/G1 cell cycle phases and decrease in cyclin D1 protein level. Concomitantly, SOR/Bio-A reduced Bcl-2/Bax ratio. Furthermore, this co-treatment significantly increased caspase-3 &-9 apoptotic markers, while decreased anti-apoptotic and proliferative markers; survivin and Ki-67, respectively. Active caspase-3 in HepG2, SNU-449 and Huh-7 confirmed our synergism hypothesis. This study introduces a novel combination, where Bio-A synergistically enhanced the anti-proliferative and apoptotic effects of SOR in HCC cells, which could serve as a potential effective regimen for treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular , Drug Synergism , Genistein/pharmacology , Hepatocytes/drug effects , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Niacinamide/pharmacology , Sorafenib
10.
Eur J Med Chem ; 89: 549-60, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25462265

ABSTRACT

A novel series of N-substituted-4-phenylphthalazin-1-ones 14a-g bearing different anilines at the N-2 of phthalazin-1-one scaffold via acetyl-flexible linker was designed and synthesized for the development of potential anticancer agents. Compounds 19a-g were synthesized by insertion of methylene (CH2) bridge at C4-position of 14a-g to provide a flexibility for the phenyl group. The newly synthesized compounds 14a-g and 19a-g were evaluated for their anti-proliferative activity against three human tumor cell lines HepG2 hepatocellular carcinoma, HT-29 colon cancer and MCF-7 breast cancer. In particular, HepG2 and HT-29 cancer cell lines were more susceptible to the synthesized derivatives. Compound 19d (IC50 = 1.2 ± 0.09 µM) was found to be the most potent derivative against HepG2 as it was 2.9 times more active than doxorubicin (IC50 = 3.45 ± 0.54) and sorafenib (IC50 = 3.5 ± 1.04 µM). Compounds 14e, 14g, 19d and 19g with IC50 = (3.29 ± 0.45), (3.50 ± 0.846), (1.20 ± 0.09) and (3.52 ± 0.70) µM, respectively, were found to be active candidates against HepG2 cancer cells. Compounds 14e, 14g, 19d and 19g were able to induce apoptosis in HepG2, this was assured by; the significant increase in the percentage of annexin V-FITC-positive apoptotic cells (UR + LR), the down-regulation of the anti-apoptotic protein Bcl-2 and the up-regulation of the pro-apoptotic protein Bax, in addition to boosting caspase-3 levels. Moreover, cytotoxicity evaluation of the newly synthesized compounds in HT-29 revealed that compounds 14e, 14f, 19e and 19f (IC50 = 3.05 ± 0.78, 4.02 ± 1.18, 3.68 ± 0.79 and 2.98 ± 0.47 µM, respectively) were more potent than doxorubicin (IC50 = 7.70 ± 1.78 µM).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Design , Phthalazines/chemistry , Phthalazines/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HT29 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Structure , Phthalazines/chemical synthesis , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Eur J Med Chem ; 83: 155-66, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24956552

ABSTRACT

New series of 2-(2-arylidenehydrazinyl)pyrido[2,3-d]pyrimidines 5a-e and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidines 6-15 were synthesized and evaluated for their cytotoxic activity against two cancer cell lines, namely PC-3 prostate cancer and A-549 lung cancer. Some of the tested compounds displayed high growth inhibitory activity against PC-3 cells. Whereas, compounds 5b and 15f showed relatively potent antitumor activity against PC-3 and A-549 cell lines. In particular, 4-(3-acetyl-5-oxo-6-phenyl-8-(thiophen-2-yl)pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-1(5H)-yl)benzenesulfonamide 15f exhibited superior antitumor activity against both cell lines at submicromolar level (IC50 = 0.36, 0.41 µM, respectively). Moreover, the potential mechanisms of the cytotoxic activity of the promising compound 15f on the more sensitive cell line PC-3 were studied. The data indicated that 15f was able to cause cell cycle arrest at least partly through enhancing the expression level of the cell cycle inhibitor p21 and induced cancer cell apoptosis via caspase-3 dependent pathway.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Triazoles/chemistry , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Cell Line, Tumor , Chemistry Techniques, Synthetic , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pyrimidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...