Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 147(7): 2334-2343, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38527963

ABSTRACT

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.


Subject(s)
Pedigree , Humans , Male , Female , Child , Adult , Adolescent , Young Adult , Middle Aged , Animals , Lower Extremity/physiopathology , Caenorhabditis elegans , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/physiopathology , Mutation
2.
Brain ; 146(3): 858-864, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36417180

ABSTRACT

Pyruvate is an essential metabolite produced by glycolysis in the cytosol and must be transported across the inner mitochondrial membrane into the mitochondrial matrix, where it is oxidized to fuel mitochondrial respiration. Pyruvate import is performed by the mitochondrial pyruvate carrier (MPC), a hetero-oligomeric complex composed by interdependent subunits MPC1 and MPC2. Pathogenic variants in the MPC1 gene disrupt mitochondrial pyruvate uptake and oxidation and cause autosomal-recessive early-onset neurological dysfunction in humans. The present work describes the first pathogenic variants in MPC2 associated with human disease in four patients from two unrelated families. In the first family, patients presented with antenatal developmental abnormalities and harboured a homozygous c.148T>C (p.Trp50Arg) variant. In the second family, patients that presented with infantile encephalopathy carried a missense c.2T>G (p.Met1?) variant disrupting the initiation codon. Patient-derived skin fibroblasts exhibit decreased pyruvate-driven oxygen consumption rates with normal activities of the pyruvate dehydrogenase complex and mitochondrial respiratory chain and no defects in mitochondrial content or morphology. Re-expression of wild-type MPC2 restored pyruvate-dependent respiration rates in patient-derived fibroblasts. The discovery of pathogenic variants in MPC2 therefore broadens the clinical and genetic landscape associated with inborn errors in pyruvate metabolism.


Subject(s)
Mitochondria , Mitochondrial Membrane Transport Proteins , Humans , Female , Pregnancy , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Biological Transport , Pyruvic Acid/metabolism
3.
Neuropediatrics ; 52(4): 302-309, 2021 08.
Article in English | MEDLINE | ID: mdl-34192786

ABSTRACT

Hypomyelination and congenital cataract (HCC) is characterized by congenital cataract, progressive neurologic impairment, and diffuse myelin deficiency. This autosomal recessive disorder is caused by homozygous variant in the FAM126A gene. Five consanguineous Tunisian patients, belonging to three unrelated families, underwent routine blood tests, electroneuromyography, and magnetic resonance imaging of the brain. The direct sequencing of FAM126A exons was performed for the patients and their relatives. We summarized the 30 previously published HCC cases. All of our patients were carriers of a previously reported c.414 + 1G > T (IVS5 + 1G > T) variant, but the clinical spectrum was variable. Despite the absence of a phenotype-genotype correlation in HCC disease, screening of this splice site variant should be performed in family members at risk.


Subject(s)
Cataract , Hereditary Central Nervous System Demyelinating Diseases , Cataract/congenital , Cataract/diagnostic imaging , Cataract/genetics , Consanguinity , Hereditary Central Nervous System Demyelinating Diseases/diagnostic imaging , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Pedigree
4.
J Appl Genet ; 60(1): 49-56, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30284680

ABSTRACT

Autism spectrum disorder (ASD) is a set of neurodevelopmental conditions characterized by early-onset difficulties in social communication and unusually restricted, repetitive behavior and interests. Parental consanguinity may lead to higher risk of ASD and to more severe clinical presentations in the offspring. Studies of ASD families with high inbreeding enable the identification of inherited variants of this disorder particularly those with an autosomal recessive pattern of inheritance. In our study, using copy number variants (CNV) analysis, we identified a rare homozygous deletion in 2p11.2 region that affects ELMOD3, CAPG, and SH2D6 genes in a boy with ASD, intellectual disability (ID), and hearing impairment (HI). This deletion may reveal a new contiguous deletion syndrome in which ELMOD3, known to be implicated in autosomal recessive deafness underlies the HI of the proband and CAPG, member of actin regulatory proteins involved in cytoskeletal dynamic, an important function for brain development and activity, underlies the ASD/ID phenotype. A possible contribution of SH2D6 gene, as a part of a chimeric gene, to the clinical presentation of the patient is discussed. Our result supports the implication of ELMOD3 in hearing loss and highlights the potential clinical relevance of 2p11.2 deletion in autism and/or intellectual disability.


Subject(s)
Autism Spectrum Disorder/genetics , GTPase-Activating Proteins/genetics , Hearing Loss/genetics , Intellectual Disability/genetics , Sequence Deletion , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 2/genetics , Female , Homozygote , Humans , Infant , Male , Pedigree
5.
Neuropediatrics ; 49(5): 339-341, 2018 10.
Article in English | MEDLINE | ID: mdl-30011403

ABSTRACT

ATP1A3 mutations have now been recognized in infants, children, and adults presenting with a diverse group of neurological phenotypes, including rapid-onset dystonia-parkinsonism, alternating hemiplegia of childhood, and most recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss syndrome. The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand. In this case study, we report on early life epilepsy with episodic apnea potentially secondary to ATP1A3 mutation in a Tunisian child.


Subject(s)
Apnea/genetics , Epilepsy/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...