Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 29(11): 1666-79, 2008 Nov.
Article in English | MEDLINE | ID: mdl-17507114

ABSTRACT

Cholinergic deficits occur in the aged hippocampus and they are significant in Alzheimer's disease. Using stereological and biochemical approaches, we characterized the cholinergic septohippocampal pathway in old (24 months) and young adult (3 months) rats. The total length of choline acetyltransferase (ChAT)-positive fibers in the dorsal hippocampus was significantly decreased by 32% with aging (F((1,9))=20.94, p=0.0014), along with the levels of synaptophysin, a presynaptic marker. No significant changes were detected in ChAT activity or in the amounts of ChAT protein, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin related kinase receptor (Trk) A, TrkB, or p75 neurotrophin receptor (p75(NTR)) in the aged dorsal hippocampus. The number and size of ChAT-positive neurons and the levels of ChAT activity, NGF and BDNF were not statistically different in the septum of aged and young adult rats. This study suggests that substantial synaptic loss and cholinergic axonal degeneration occurs during aging and reinforces the importance of therapies that can protect axons and promote their growth in order to restore cholinergic neurotransmission.


Subject(s)
Acetylcholine/metabolism , Aging/metabolism , Aging/pathology , Hippocampus/cytology , Hippocampus/metabolism , Nerve Fibers/metabolism , Nerve Fibers/ultrastructure , Neurotransmitter Agents/metabolism , Animals , Cell Size , Rats , Rats, Inbred F344
2.
Brain Res ; 1144: 52-8, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17335782

ABSTRACT

Polysialic acid (PSA) is a large carbohydrate found exclusively on the neural cell adhesion molecule (NCAM). In the adult brain, PSA is re-expressed by septal axons sprouting and regenerating in an environment rich in laminin. Using an in vitro model, we tested the possibility that PSA limits septal outgrowth by preventing maximal interactions with a laminin substrate. Our results indicate that PSA removal from primary septal neurons plated on laminin significantly increased neurite outgrowth at 12 h (14%, p<0.05) and 24 h (22%, p<0.01). In contrast, the removal of PSA had no impact on septal neurite outgrowth on poly-D-lysine. PSA did not influence the plating adhesion of septal neurons on laminin or poly-D-lysine, indicating that the increase in neurite outgrowth caused by PSA removal on laminin is not related to the initial attachment of the neurons to this substrate. Neurite length on laminin was significantly reduced by the function-blocking beta1-integrin antibody in the presence of PSA (20% decrease, p<0.05), and following PSA removal (34% decrease compared to neurites treated with endoN and without the beta1-integrin antibody, p<0.01). Importantly, the beta1-integrin antibody completely abolished the neurite outgrowth promoting effect of PSA removal on laminin. The beta1-integrin antibody had no impact on septal neurite length on poly-D-lysine. Taken together, these results indicate that the removal of PSA from septal neurons increases neurite outgrowth on laminin by promoting interactions between beta1-integrin and laminin.


Subject(s)
Laminin/physiology , Neurites/drug effects , Neurons/cytology , Septum of Brain/cytology , Sialic Acids/pharmacology , Analysis of Variance , Animals , Antibodies/pharmacology , Drug Interactions , Embryo, Mammalian , GAP-43 Protein/metabolism , Laminin/immunology , Rats , Rats, Inbred F344 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL