Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Cancer ; 4(5): 648-664, 2023 05.
Article in English | MEDLINE | ID: mdl-37169842

ABSTRACT

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Subject(s)
Glioblastoma , Humans , Astrocytes/metabolism , Astrocytes/pathology , GAP-43 Protein/metabolism , GAP-43 Protein/therapeutic use , Axons/metabolism , Axons/pathology , Cell Line, Tumor , Nerve Regeneration , Mitochondria/metabolism , Mitochondria/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...