Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cancer Lett ; 593: 216807, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38462037

ABSTRACT

The tumour microenvironment (TME) drives bladder cancer (BLCA) progression. Targeting the TME has emerged as a promising strategy for BLCA treatment in recent years. Furthermore, checkpoint blockade therapies are only beneficial for a minority of patients with BLCA, and drug resistance is a barrier to achieving significant clinical effects of anti-programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) therapy. In this study, higher low-density lipoprotein receptor-related protein 1 (LRP1) levels were related to a poorer prognosis for patients with various cancers, including those with higher grades and later stages of BLCA. Enrichment analysis demonstrated that LRP1 plays a role in the epithelial-mesenchymal transition (EMT), NOTCH signalling pathway, and ubiquitination. LRP1 knockdown in BLCA cells delayed BLCA progression both in vivo and in vitro. Furthermore, LRP1 knockdown suppressed EMT, reduced DLL4-NOTCH2 signalling activity, and downregulated M2-like macrophage polarisation. Patients with BLCA and higher LRP1 levels responded weakly to anti-PD-1 therapy in the IMvigor210 cohort. Moreover, LRP1 knockdown enhanced the therapeutic effects of anti-PD-1 in mice. Taken together, our findings suggest that LRP1 is a potential target for improving the efficacy of anti-PD-1/PD-L1 therapy by preventing EMT and M2-like macrophage polarisation by blocking the DLL4-NOTCH2 axis.

2.
iScience ; 26(11): 108087, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37860697

ABSTRACT

Understanding the factors that regulate T cell infiltration and functional states in solid tumors is crucial for advancing cancer immunotherapies. Here, we discovered that the expression of interferon regulatory factor 4 (IRF4) was a critical T cell intrinsic requirement for effective anti-tumor immunity. Mice with T-cell-specific ablation of IRF4 showed significantly reduced T cell tumor infiltration and function, resulting in accelerated growth of subcutaneous syngeneic tumors and allowing the growth of allogeneic tumors. Additionally, engineered overexpression of IRF4 in anti-tumor CD8+ T cells that were adoptively transferred significantly promoted their tumor infiltration and transition from a naive/memory-like cell state into effector T cell states. As a result, IRF4-engineered anti-tumor T cells exhibited significantly improved anti-tumor efficacy, and inhibited tumor growth either alone or in combination with PD-L1 blockade. These findings identify IRF4 as a crucial cell-intrinsic driver of T cell infiltration and function in tumors, emphasizing the potential of IRF4-engineering as an immunotherapeutic approach.

3.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37802603

ABSTRACT

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy improves the survival of patients with advanced bladder cancer (BLCA); however, its overall effectiveness is limited, and many patients still develop immunotherapy resistance. The leucine-rich repeat and fibronectin type-III domain-containing protein (LRFN) family has previously been implicated in regulating brain dysfunction; however, the mechanisms underlying the effect of LRFN2 on the tumor microenvironment (TME) and immunotherapy remain unclear. METHODS: Here we combined bulk RNA sequencing, single-cell RNA sequencing, ProcartaPlex multiple immunoassays, functional experiments, and TissueFAXS panoramic tissue quantification assays to demonstrate that LRFN2 shapes a non-inflammatory TME in BLCA. RESULTS: First, comprehensive multiomics analysis identified LRFN2 as a novel immunosuppressive target specific to BLCA. We found that tumor-intrinsic LRFN2 inhibited the recruitment and functional transition of CD8+ T cells by reducing the secretion of pro-inflammatory cytokines and chemokines, and this mechanism was verified in vitro and in vivo. LRFN2 restrained antitumor immunity by inhibiting the infiltration, proliferation, and differentiation of CD8+ T cells in vitro. Furthermore, a spatial exclusivity relationship was observed between LRFN2+ tumor cells and CD8+ T cells and cell markers programmed cell death-1 (PD-1) and T cell factor 1 (TCF-1). Preclinically, LRFN2 knockdown significantly enhanced the efficacy of ICI therapy. Clinically, LRFN2 can predict immunotherapy responses in real-world and public immunotherapy cohorts. Our results reveal a new role for LRFN2 in tumor immune evasion by regulating chemokine secretion and inhibiting CD8+ T-cell recruitment and functional transition. CONCLUSIONS: Thus, LRFN2 represents a new target that can be combined with ICIs to provide a potential treatment option for BLCA.


Subject(s)
CD8-Positive T-Lymphocytes , Urinary Bladder Neoplasms , Humans , Biological Assay , Cell Differentiation , Immunotherapy , Membrane Glycoproteins , Nerve Tissue Proteins , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy , Drug Resistance, Neoplasm
4.
Lab Invest ; 103(9): 100210, 2023 09.
Article in English | MEDLINE | ID: mdl-37406931

ABSTRACT

Pheochromocytoma/paraganglioma (PPGL) is an endocrine-related tumor associated with excessive catecholamine release and has limited treatment options once metastasis occurs. Although recent phase 2 clinical trials of immune checkpoint inhibitors in the treatment of PPGL have preliminarily shown promising results, the fundamentals of immunotherapy for PPGL have not yet been established. In the early research, using bulk RNA sequencing of tumor samples from 7 PPGL patients, we found that PPGL tumor tissues exhibited high PD-L1 mRNA expression compared with adjacent normal adrenal medulla tissues, and this was related to T-cell exhaustion biomarkers. To further validate the association, in this study (n = 60), we first stratified all PPGL samples according to PD-L1 expression as determined by immunohistochemical staining, and then subjected 23 fresh PPGL tumor samples from the cohort to a quantitative polymerase chain reaction (n = 16), flow cytometry (n = 7), and multiplex-immunofluorescence staining. Subsequently, we evaluated the pathological manifestations of all 60 PPGL tumor samples and analyzed the correlation among PD-L1 expression, adverse pathological behavior, various clinicopathological data, and genotypes in PPGL. The results showed that PD-L1-positive expression correlated with the exhaustion of tumor-infiltrating T cells, preoperative abnormal elevation of plasma norepinephrine, high Ki67 index, and adverse pathological behavior in PPGL but not with genetic mutation or metastatic disease, possibly due to the limitation of the small number of patients with metastatic disease (n = 4) in the study cohort. In conclusion, our findings reveal that PD-L1 expression is associated with T-cell exhaustion and adverse pathological behavior in PPGL. These results are expected to provide a new theoretical basis and clinical guidance for the treatment of PPGL.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/genetics , B7-H1 Antigen/genetics , T-Cell Exhaustion , Adrenal Gland Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating
5.
Research (Wash D C) ; 6: 0271, 2023.
Article in English | MEDLINE | ID: mdl-38178902

ABSTRACT

T-cell-based immunotherapy is gaining momentum in cancer treatment; however, our comprehension of the transcriptional regulation governing T cell antitumor activity remains constrained. The objective of this study was to explore the function of interferon regulatory factor 4 (IRF4) in antitumor CD8+ T cells using the TRAMP-C1 prostate cancer and B16F10 melanoma model. To achieve this, we generated an Irf4GFP-DTR mouse strain and discovered that CD8+ tumor-infiltrating lymphocytes (TILs) expressing high levels of IRF4.GFP exhibited a more differentiated PD-1high cell phenotype. By administering diphtheria toxin to tumor-bearing Irf4GFP-DTR mice, we partially depleted IRF4.GFP+ TILs and observed an accelerated tumor growth. To specifically explore the function of IRF4 in antitumor CD8+ T cells, we conducted 3 adoptive cell therapy (ACT) models. Firstly, depleting IRF4.GFP+ CD8+ TILs derived from ACT significantly accelerated tumor growth, emphasizing their crucial role in controlling tumor progression. Secondly, deleting the Irf4 gene in antitumor CD8+ T cells used for ACT led to a reduction in the frequency and effector differentiation of CD8+ TILs, completely abolishing the antitumor effects of ACT. Lastly, we performed a temporal deletion of the Irf4 gene in antitumor CD8+ T cells during ACT, starting from 20 days after tumor implantation, which significantly compromised tumor control. Therefore, sustained expression of IRF4 is essential for maintaining CD8+ T cell immunity in the melanoma model, and these findings carry noteworthy implications for the advancement of more potent immunotherapies for solid tumors.

6.
Cell Rep Med ; 3(11): 100785, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36265483

ABSTRACT

To parallelly compare the efficacy of neoadjuvant immunotherapy (tislelizumab), neoadjuvant chemotherapy (gemcitabine and cisplatin), and neoadjuvant combination therapy (tislelizumab + GC) in patients with muscle-invasive bladder cancer (MIBC) and explore the efficacy predictors, we perform a multi-center, real-world cohort study that enrolls 253 patients treated with neoadjuvant treatments (combination therapy: 98, chemotherapy: 107, and immunotherapy: 48) from 15 tertiary hospitals. We demonstrate that neoadjuvant combination therapy achieves the highest complete response rate and pathological downstaging rate compared with neoadjuvant immunotherapy or chemotherapy. We develop and validate an efficacy prediction model consisting of pretreatment clinical characteristics, which can pinpoint candidates to receive neoadjuvant combination therapy. We also preliminarily reveal that patients who achieve pathological complete response after neoadjuvant treatments plus maximal transurethral resection of the bladder tumor may be safe to receive bladder preservation therapy. Overall, this study highlights the benefit of neoadjuvant combination therapy based on tislelizumab for MIBC.


Subject(s)
Neoadjuvant Therapy , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Retrospective Studies , Cohort Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasm Invasiveness , Immunotherapy , Muscles/pathology
7.
Front Immunol ; 12: 705086, 2021.
Article in English | MEDLINE | ID: mdl-34777336

ABSTRACT

Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression, but the potential role of PMEPA1 in bladder cancer (BLCA) remains elusive. We assess the role of PMEPA1 in BLCA, via a publicly available database and in vitro study. PMEPA1 was identified from 107 differentially expressed genes (DEGs) to have prognostic value. GO, KEGG, and GSEA analysis indicated that PMEPA1 was involved in cancer progression and the tumor microenvironment (TME). Then bioinformatical analysis in TCGA, GEO, TIMER, and TISIDB show a positive correlation with the inflammation and infiltration levels of three tumor-infiltrating immune cells (TAMs, CAFs, and MDSCs) and immune/stromal scores in TME. Moreover, in vitro study revealed that PMEPA1 promotes bladder cancer cell malignancy. Immunohistochemistry and survival analysis shed light on PMEPA1 potential to be a novel biomarker in predicting tumor progression and prognosis. At last, we also analyzed the role of PMEPA1 in predicting the molecular subtype and the response to several treatment options in BLCA. We found that PMEPA1 may be a novel potential biomarker to predict the progression, prognosis, and molecular subtype of BLCA.


Subject(s)
Biomarkers, Tumor , Membrane Proteins/genetics , Tumor Microenvironment , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Computational Biology/methods , Female , Gene Expression Profiling , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Membrane Proteins/metabolism , Neoplasm Grading , Neoplasm Staging , Prognosis , Transcriptome , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Urinary Bladder Neoplasms/mortality
8.
BMC Med ; 19(1): 289, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836536

ABSTRACT

BACKGROUND: Depicting the heterogeneity and functional characteristics of the tumor microenvironment (TME) is necessary to achieve precision medicine for bladder cancer (BLCA). Although classical molecular subtypes effectively reflect TME heterogeneity and characteristics, their clinical application is limited by several issues. METHODS: In this study, we integrated the Xiangya cohort and multiple external BLCA cohorts to develop a novel 5-methylcytosine (5mC) regulator-mediated molecular subtype system and a corresponding quantitative indicator, the 5mC score. Unsupervised clustering was performed to identify novel 5mC regulator-mediated molecular subtypes. The principal component analysis was applied to calculate the 5mC score. Then, we correlated the 5mC clusters (5mC score) with classical molecular subtypes, immunophenotypes, clinical outcomes, and therapeutic opportunities in BLCA. Finally, we performed pancancer analyses on the 5mC score. RESULTS: Two 5mC clusters, including 5mC cluster 1 and cluster 2, were identified. These novel 5mC clusters (5mC score) could accurately predict classical molecular subtypes, immunophenotypes, prognosis, and therapeutic opportunities of BLCA. 5mC cluster 1 (high 5mC score) indicated a luminal subtype and noninflamed phenotype, characterized by lower anticancer immunity but better prognosis. Moreover, 5mC cluster 1 (high 5mC score) predicted low sensitivity to cancer immunotherapy, neoadjuvant chemotherapy, and radiotherapy, but high sensitivity to antiangiogenic therapy and targeted therapies, such as blocking the ß-catenin, FGFR3, and PPAR-γ pathways. CONCLUSIONS: The novel 5mC regulator-based subtype system reflects many aspects of BLCA biology and provides new insights into precision medicine in BLCA. Furthermore, the 5mC score may be a generalizable predictor of immunotherapy response and prognosis in pancancers.


Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Precision Medicine , Tumor Microenvironment , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy
9.
Front Immunol ; 12: 697026, 2021.
Article in English | MEDLINE | ID: mdl-34526985

ABSTRACT

N6-methylation of adenosine (m6A), a post-transcriptional regulatory mechanism, is the most abundant nucleotide modification in almost all types of RNAs. The biological function of m6A in regulating the expression of oncogenes or tumor suppressor genes has been widely investigated in various cancers. However, recent studies have addressed a new role of m6A modification in the anti-tumor immune response. By modulating the fate of targeted RNA, m6A affects tumor-associated immune cell activation and infiltration in the tumor microenvironment (TME). In addition, m6A-targeting is found to affect the efficacy of classical immunotherapy, which makes m6A a potential target for immunotherapy. Although m6A modification together with its regulators may play the exact opposite role in different tumor types, targeting m6A regulators has been shown to have wide implications in several cancers. In this review, we discussed the link between m6A modification and tumor with an emphasis on the importance of m6A in anti-tumor immune response and immunotherapy.


Subject(s)
Adenosine/analogs & derivatives , Antineoplastic Agents/therapeutic use , Immunotherapy , Neoplasms/drug therapy , RNA, Neoplasm/metabolism , Tumor Microenvironment , Adenosine/genetics , Adenosine/immunology , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/immunology , Tumor Microenvironment/immunology
10.
Front Oncol ; 11: 607224, 2021.
Article in English | MEDLINE | ID: mdl-34026603

ABSTRACT

BACKGROUND: YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) has been indicated proven to participate in the cross-presentation of tumor antigens in dendritic cells and the cross-priming of CD8+ T cells. However, the role of YTHDF1 in prognosis and immunology in human cancers remains largely unknown. METHODS: All original data were downloaded from TCGA and GEO databases and integrated via R 3.2.2. YTHDF1 expression was explored with the Oncomine, TIMER, GEPIA, and BioGPS databases. The effect of YTHDF1 on prognosis was analyzed via GEPIA, Kaplan-Meier plotter, and the PrognoScan database. The TISIDB database was used to determine YTHDF1 expression in different immune and molecular subtypes of human cancers. The correlations between YTHDF1 expression and immune checkpoints (ICP), tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens in human cancers were analyzed via the SangerBox database. The relationships between YTHDF1 expression and tumor-infiltrated immune cells were analyzed via the TIMER and GEPIA databases. The relationships between YTHDF1 and marker genes of tumor-infiltrated immune cells in urogenital cancers were analyzed for confirmation. The genomic alterations of YTHDF1 were investigated with the c-BioPortal database. The differential expression of YTHDF1 in urogenital cancers with different clinical characteristics was analyzed with the UALCAN database. YTHDF1 coexpression networks were studied by the LinkedOmics database. RESULTS: In general, YTHDF1 expression was higher in tumors than in paired normal tissue in human cancers. YTHDF1 expression had strong relationships with prognosis, ICP, TMB, MSI, and neoantigens. YTHDF1 plays an essential role in the tumor microenvironment (TME) and participates in immune regulation. Furthermore, significant strong correlations between YTHDF1 expression and tumor immune-infiltrated cells (TILs) existed in human cancers, and marker genes of TILs were significantly related to YTHDF expression in urogenital cancers. TYHDF1 coexpression networks mostly participated in the regulation of immune response and antigen processing and presentation. CONCLUSION: YTHDF1 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, YTHDF1 could be a novel target for tumor immunotherapy.

11.
Front Oncol ; 11: 642159, 2021.
Article in English | MEDLINE | ID: mdl-33816290

ABSTRACT

RNA modification of N6-methyladenosine (m6A) plays critical roles in various biological processes, such as cancer development, inflammation, and the anticancer immune response. However, the role played by a comprehensive m6A modification pattern in regulating anticancer immunity in kidney renal clear cell carcinoma (KIRC) has not been fully elucidated. In this study, we identified two independent m6A modification patterns with distinct biological functions, immunological characteristics, and prognoses in KIRC. Next, we developed an m6A score algorithm to quantify an individual's m6A modification pattern, which was independently validated in external cohorts. The m6A cluster 1 and low m6A score groups were characterized by a hot tumor microenvironment with an increased infiltration level of cytotoxic immune cells, higher tumor mutation burden, higher immune checkpoint expression, and decreased stroma-associated signature enrichment. In general, the m6A cluster 1 and low m6A score groups reflected an inflammatory phenotype, which may be more sensitive to anticancer immunotherapy. The m6A cluster 2 and high m6A score groups indicated a non-inflammatory phenotype, which may not be sensitive to immunotherapy but rather to targeted therapy. In this study, we first identified m6A clusters and m6A scores to elucidate immune phenotypes and to predict the prognosis and immunotherapy response in KIRC, which can guide urologists for making more precise clinical decisions.

12.
Theranostics ; 11(7): 3089-3108, 2021.
Article in English | MEDLINE | ID: mdl-33537076

ABSTRACT

Rationale: Siglec15 is an emerging target for normalization cancer immunotherapy. However, pan-cancer anti-Siglec15 treatment is not yet validated and the potential role of Siglec15 in bladder cancer (BLCA) remains elusive. Methods: We comprehensively evaluated the expression pattern and immunological role of Siglec15 using pan-cancer analysis based on RNA sequencing data obtained from The Cancer Genome Atlas. We then systematically correlated Siglec15 with immunological characteristics in the BLCA tumor microenvironment (TME), including immunomodulators, cancer immunity cycles, tumor-infiltrating immune cells (TIICs), immune checkpoints, and T cell inflamed score. We also analyzed the role of Siglec15 in predicting the molecular subtype and the response to several treatment options in BLCA. Our results were validated in several public cohorts as well as our BLCA tumor microarray cohort, the Xiangya cohort. We developed an immune risk score (IRS), validated it, and tested its ability to predict the prognosis and response to cancer immunotherapy. Results: We found that Siglec15 was specifically overexpressed in the TME of various cancers. We hypothesize that Siglec15 designs a non-inflamed TME in BLCA based on the evidence that Siglec15 negatively correlated with immunomodulators, TIICs, cancer immunity cycles, immune checkpoints, and T cell inflamed score. Bladder cancer with high Siglec15 expression was not sensitive to cancer immunotherapy, but exhibited a higher incidence of hyperprogression. High Siglec15 levels indicated a luminal subtype of BLCA characterized by lower immune infiltration, lower response to cancer immunotherapy and neoadjuvant chemotherapy, but higher response to anti-angiogenic therapy and targeted therapies such as blocking Siglec15, ß-catenin, PPAR-γ, and FGFR3 pathways. Notably, a combination of anti-Siglec15 and cancer immunotherapy may be a more effective strategy than monotherapy. IRS can accurately predict the prognosis and response to cancer immunotherapy. Conclusions: Anti-Siglec15 immunotherapy might be suitable for BLCA treatment as Siglec15 correlates with a non-inflamed TME in BLCA. Siglec15 could also predict the molecular subtype and the response to several treatment options.


Subject(s)
Immunoglobulins/metabolism , Membrane Proteins/metabolism , Urinary Bladder Neoplasms/metabolism , Biomarkers, Tumor/genetics , China , Computational Biology/methods , Databases, Genetic , Disease Progression , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunoglobulins/physiology , Immunotherapy , Membrane Proteins/physiology , Prognosis , Sequence Analysis, RNA/methods , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/pathology
13.
Biosci Rep ; 41(8)2021 08 27.
Article in English | MEDLINE | ID: mdl-33635319

ABSTRACT

BACKGROUND: Evaluation of the feasibility for osteopontin (OPN) to serve as a biomarker in the prognosis and clinical-pathological features of prostate cancer (PCA) patients. METHODS: The original publications related to OPN and PCA were comprehensively searched in the online databases, including PubMed, Embase, Cochrane Library, Web of Science, Medline, Wanfang and China National Knowledge Infrastructure up to August 2019. Results were analyzed by Revman 5.3 and Stata 12.0. RESULTS: A total of 21 studies were included in the analysis and the result showed that the positive OPN expression group had a lower overall survival than the negative expression group (univariate: hazards ratio (HR) = 2.32, 95% confidence interval (95% CI) [1.74, 3.10], multivariate: HR = 2.41, 95% CI [1.63, 3.57]) and a lower biochemical relapse-free survival than the negative group (univariate: HR = 1.42, 95% CI [0.92, 2.17], multivariate: HR = 1.61, 95% CI [1.39, 1.87]). In addition, there was a higher expression level of OPN in PCA tissues than in normal prostate tissues (OR = 46.55, 95% CI [12.85, 168.59], P<0.00001) and benign prostatic hyperplasia (BPH) tissues (OR = 11.07, 95% CI [3.43, 35.75], P<0.0001). Moreover, OPN positive expression was also related to high Gleason score (OR = 2.64, 95% CI [1.49, 4.70], P=0.0009), high TNM stage (OR = 3.15, 95% CI [1.60, 6.20, P=0.0009), high Whitmore-Jewett stage (OR = 2.53, 95% CI [1.06, 6.03], P=0.04), high lymph node (OR = 3.69, 95% CI [1.88, 7.23], P=0.0001), and distant metastasis (OR = 8.10, 95% CI [2.94, 22.35], P=0.01). There was no difference observed in the differentiation of PCA (OR = 1.79, 95% CI [0.39, 8.33], P=0.46). CONCLUSION: OPN could be recognized as a promising diagnostic and prognostic biomarker for PCA patients.


Subject(s)
Biomarkers, Tumor/metabolism , Osteopontin/metabolism , Prostatic Neoplasms/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Humans , Kallikreins/metabolism , Male , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasm Staging , Predictive Value of Tests , Progression-Free Survival , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Risk Assessment , Risk Factors , Young Adult
14.
Am J Transl Res ; 12(11): 7262-7274, 2020.
Article in English | MEDLINE | ID: mdl-33312365

ABSTRACT

Adoptive T cell therapy has emerged as a promising treatment for cancer. However, it is unknown whether adoptively transferred anti-tumor T cells can form immunological memory and provide continuous protection against cancer metastasis. Herein, we used TCR transgenic Pmel-1 CD8+ T cells as a model to investigate whether early transferred Pmel-1 CD8+ T cells can generate immunological memory to prevent later melanoma metastasis. Upon stimulation with the cognate melanoma-associated hgp100 antigen, in vitro cultured Pmel-1 CD8+ T cells developed into effector T (Teff) cells that exhibited potent cytotoxic activity against B16F10 melanoma cells. Next, B16F10 melanoma cells were intravenously injected into C57BL/6 (B6) mice to establish experimental lung metastasis. In vitro generated Pmel-1 Teff cells were adoptively transferred into the mice on the same day of or three weeks prior to B16F10 cell inoculation. We found that adoptive Pmel-1 Teff cell therapy significantly inhibited the B16F10 lung metastasis and prolonged the animal survival. Importantly, Pmel-1 Teff cells transferred three weeks prior to tumor inoculation were as potent as the Pmel-1 Teff cells transferred on the same day in inhibiting melanoma metastasis. Hence, our results suggest that adoptive CD8+ Teff cell therapy generates immunological memory that continuously protect against melanoma metastasis.

15.
Transl Androl Urol ; 9(2): 267-275, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32420132

ABSTRACT

BACKGROUND: Although 40% to 80% of pediatric patients with pheochromocytoma (PCC) and paraganglioma (PGL) have been reported to carry germline mutations, the genetic and clinical features are poorly understood, and few such patients have undergone genetic testing. In this series, we aimed to investigate the clinical and genetic features of Han Chinese pediatric patients with PCC/PGL. METHODS: The medical records of 15 pediatric patients with PCC/PGL who presented to our hospital between 2006 and 2018 were retrospectively studied. DNAs isolated from leukocytes of the patients were analyzed using whole-exome sequencing (WES). RESULTS: The patients were nine girls and six boys with a mean age of 14.9 (range, 6-18) years. All were alive after a follow-up from 1 to 12 years, although two were diagnosed with pulmonary metastatic PGLs. Four patients were diagnosed with bilateral PCCs. Four patients were diagnosed with tumor syndromes. Among the 15 patients, nine were identified carrying germline mutations, of which seven were VHL and one each of RET and SDHB. In addition, a de novo mutation, VHL c.193T>A, was identified in a patient clinically diagnosed with a VHL syndrome. CONCLUSIONS: Among 15 pediatric patients studied, nine were identified carrying germline genetic mutations, four were diagnosed with bilateral PCCs, and four were diagnosed with other syndromic tumors in addition to PCC, which underscores the importance of genetic testing and managing treatment accordingly.

16.
Cancer Cell Int ; 20: 169, 2020.
Article in English | MEDLINE | ID: mdl-32467665

ABSTRACT

BACKGROUND: Nestin has been revealed to promote tumorigenesis, progression, metastasis, and angiogenesis of breast cancer. Although the prognostic and clinicopathological impact of nestin expression on breast cancer patients has been assessed in several independent studies, their results remained conflicting. Therefore, we performed this meta-analysis to elucidate the prognostic and clinicopathological association of nestin expression with breast cancer. METHODS: A comprehensive literature search was performed in the electronic databases PubMed, EMBASE, Web of Science, the Cochrane Library, China National Knowledge Infrastructure (CNKI), and the Wangfang Data. The statistical analysis was conducted using Stata 15.0 and Review Manager 5.3. RESULTS: A total of 15 studies with 6066 breast cancer patients were included in this meta-analysis. Pooled results indicated that positive expression of nestin was significantly associated with reduced breast cancer-specific survival (BCSS, univariate analysis, HR = 2.11, 95% CI [1.79, 2.49], P < 0.00001; multivariate analysis, HR = 1.30, 95% CI [1.06, 1.60], P = 0.01), worse overall survival (OS, univariate analysis, HR = 1.88, 95% CI [1.31, 2.71], P = 0.0007; multivariate analysis, HR = 1.89, 95% CI [1.34, 2.67], P = 0.0003) and poorer recurrence-free survival (univariate analysis, HR = 2.60, 95% CI [1.52, 4.46], P = 0.0005), but not with distant metastasis-free survival in univariate analysis (P > 0.05). In addition, increased nestin expression was correlated with younger age, higher tumor grade, larger tumor size, positive blood vessel invasion and high vascular proliferation index, but not with lymph node metastasis or lymph vessel invasion. Nestin was preferentially expressed in invasive ductal carcinoma, triple-negative breast cancer and basal-like subtypes. Nestin expression was inversely associated with the expression of ER and PR, but not with HER-2. Conversely, nestin expression was positively correlated with the expression of basal-like markers CK5, P-cadherin and EGFR. Moreover, nestin expression was strongly associated with the presence of five basal-like profiles (BLP1-5). CONCLUSIONS: This meta-analysis revealed the prognostic value and clinicopathological significance of nestin expression in breast cancer. Nestin is an independent prognostic factor for worse BCSS and OS of breast cancer patients. Nestin is also a valuable biomarker for unfavorable clinicopathological features and tumor angiogenesis of breast cancer. Therefore, nestin is a promising therapeutic target for malignant breast cancer, especially for TNBC and basal-like phenotype.

17.
Front Genet ; 11: 15, 2020.
Article in English | MEDLINE | ID: mdl-32161614

ABSTRACT

We investigated differentially expressed circular RNAs (circRNAs) and their potential functions in pheochromocytomas and paragangliomas (PCC/PGLs). Expression levels of circRNAs in tumor and adjacent normal tissues from seven PCC/PGL patients were analyzed through RNA sequencing. Real-time PCR was conducted to verify the key candidates identified in the sequencing data. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the functions of these circRNAs. A total of 367 circRNAs were found differentially expressed between tumor and normal samples. The top three histone methylation-related circRNAs (hsa_circ_0000567, hsa_circ_0002897, and hsa_circ_0004473) and their target microRNAs (miRNAs) were identified and validated. We then mapped the circRNA-miRNA-messenger RNA (mRNA) coding-noncoding gene co-expression (CNC) networks to show the potential binding relationships between circRNAs and their targets in PCC/PGLs. The top five mRNAs, 88 miRNAs, and 132 circRNAs related to pathogenesis were utilized to map the CNC network, and we observed that the interactions of these candidates with their target miRNAs regulated histone methylation and further mediated PCC/PGL pathogenesis. This study is the first to provide the whole profile of differentially expressed circRNAs in PCC/PGLs. Our data indicate that altered circRNAs may control the pathogenesis of PCC/PGLs by regulating histone methylation processes, highlighting their role as potential biomarkers.

18.
Am J Cancer Res ; 10(12): 4234-4250, 2020.
Article in English | MEDLINE | ID: mdl-33414997

ABSTRACT

Cytotoxic CD8+ T cell exhaustion is one of the mechanisms underlying the tumor immune escape. The paradigm-shifting immune checkpoint therapy can mitigate CD8+ T lymphocyte exhaustion, reinvigorate the anticancer immunity, and achieve durable tumor regression for some patients. Emerging evidence indicates that CD4+ T lymphocytes also have a critical role in anticancer immunity, either by directly applying cytotoxicity toward cancer cells or as a helper to augment CD8+ T cell cytotoxicity. Whether anticancer CD4+ T lymphocytes undergo exhaustion during immunotherapy of solid tumors remains unknown. Here we report that melanoma antigen TRP-1/gp75-specific CD4+ T lymphocytes exhibit an exhaustion phenotype after being adoptively transferred into mice bearing large subcutaneous melanoma. Exhaustion of these CD4+ T lymphocytes is accompanied with reduced cytokine release and increased expression of inhibitory receptors, resulting in loss of tumor control. Importantly, we demonstrate that PD-L1 immune checkpoint blockade can prevent exhaustion, induce proliferation of the CD4+ T lymphocytes, and consequently prevent tumor recurrence. Therefore, when encountering an excessive amount of tumor antigens, tumor-reactive CD4+ T lymphocytes also enter the exhaustion state, which can be prevented by immune checkpoint blockade. Our results highlight the importance of tumor-specific CD4+ T lymphocytes in antitumor immunity and suggest that the current immune checkpoint blockade therapy may achieve durable anticancer efficacy by rejuvenating both tumor antigen-specific CD8+ T lymphocytes and CD4+ T lymphocytes.

19.
J Cancer ; 9(19): 3577-3582, 2018.
Article in English | MEDLINE | ID: mdl-30310515

ABSTRACT

Objective: To evaluate the feasibility and accuracy of machine learning based texture analysis of unenhanced CT images in differentiating subclinical pheochromocytoma (sPHEO) from lipid-poor adenoma (LPA) in adrenal incidentaloma (AI). Methods: Seventy-nine patients with 80 LPA and 29 patients with 30 sPHEO were included in the study. Texture parameters were derived using imaging software (MaZda). Thirty texture features were selected and LPA was performed for the features selected. The number of positive features was used to predict results. Logistic multiple regression analysis was performed on the 30 texture features, and a predictive equation was created based on the coefficients obtained. Results: LPA yielded a misclassification rate of 19.39% in differentiating sPHEO from LPA. Our predictive model had an accuracy rate of 94.4% (102/108), with a sensitivity of 86.2% (25/29) and a specificity of 97.5% (77/79) for differentiation. When the number of positive features was greater than 8, the accuracy of prediction was 85.2% (92/108), with a sensitivity of 96.6% (28/29) and a specificity of 81% (64/79). Conclusions: Machine learning-based quantitative texture analysis of unenhanced CT may be a reliable quantitative method in differentiating sPHEO from LPA when AI is present.

20.
Oncotarget ; 9(2): 1577-1586, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29416715

ABSTRACT

Heterozygous germline mutation of the MEN1 tumor suppressor gene is responsible for multiple endocrine neoplasia type 1. Parathyroid and thoracic neuroendocrine tumor specimens and DNA from two Han Chinese MEN1 family patients were analyzed using whole exome and Sanger sequencing. The proband (II-3) was sequentially diagnosed with pituitary adenoma, pancreatic tumor, adrenal cortical tumor, abdominal lipoma, and parathyroid adenoma during the 6-year follow-up. The son of the proband (III-6) was also diagnosed with a thoracic neuroendocrine tumor and a parathyroid adenoma during this period. Splice alterations were studied by RT-PCR and sequencing. The mutation impact was evaluated using bioinformatics. Sequence analysis revealed a novel splice donor mutation, MEN1 IVS9 + 1G > C, that changed the splicing mode of MEN1 to halt translation before two nuclear localization signals in the menin protein. Novel somatic mutations, MEN1 c.1402_1405delGAGG and c.286 C > T, were identified in the parathyroid adenoma of II-3 and thoracic neuroendocrine tumor of III-6, respectively, indicating a two-hit etiology of MEN1 syndrome. Our study revealed the clinical and genetic basis of MEN1 in this Han Chinese family and provides insight into MEN1 mechanisms, diagnosis, and management.

SELECTION OF CITATIONS
SEARCH DETAIL
...