Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 128: 111469, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38211480

ABSTRACT

Osteoarthritis (OA) is a prevalent joint disorder pathologically correlated to chondrocyte ferroptosis. Gamma-oryzanol (γ-Ory), as a first-line drug for autonomic disorders, aroused our interest because of its antioxidant, lipid-lowering, and hypoglycemic potential. The purpose of this study was to investigate the potential impact and mechanism of γ-Ory in treating OA. And the inhibition of γ-Ory in extracellular matrix molecule (ECM) degradation, ferroptosis, and Keap1-Nrf2 binding in IL-1ß-exposed chondrocytes was detected via immunoblotting, immunofluorescence, and co-immunoprecipitation. Micro-CT, SO staining, and immunofluorescence have been conducted to assess the impact of γ-Ory treatment on ACLT-mediated OA in rats at both imaging and histological stages. We found that γ-Ory dose-dependently suppressed IL-1ß-induced ECM deterioration and chondrocyte ferroptosis. Our animal experiments revealed that γ-Ory delayed ACLT-mediated OA development. Mechanistically, γ-Ory interfered with the binding of Keap1 to Nrf2 to promote the latter's nuclear import, thereby increasing the expression of detoxification enzymes. Summarily, our works support γ-Ory's potential as a candidate drug for the treatment of OA.


Subject(s)
Ferroptosis , Osteoarthritis , Phenylpropionates , Animals , Rats , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Phenylpropionates/therapeutic use
2.
Plant Signal Behav ; 16(6): 1913301, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33906568

ABSTRACT

Plant genomes encode numerous proteins with obscure features (POFs) that lack recognized domains or motifs. However, there is little functional information for POFs even in Arabidopsis because biochemical, physiological, and genetic assay are required for the functional annotations of POFs. Here, we identified a small gene family, the endoplasmic reticulum-localized POF (ERP) family, in Arabidopsis. Phylogenetic analysis revealed that the number of ERP family members was conserved in the plant kingdom, suggesting strong selective pressure was imposed on ERP family during plant evolution. No recognizable domains were identified in the predicted ERP proteins, except for the N-terminal signal peptide. ERPs were found to be widely expressed during Arabidopsis development and showed endoplasmic reticulum localization. It was reported that ERP1 is an inositol-1,4,5-trisphosphate 5-phosphatase (5PTase), but ERP1 could not substitute for At5PTase12 in precocious pollen germination, indicating that ERP1 did not have the similar functions as At5PTase12 in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] metabolism. Further studies are needed to dissect the functions of ERP family proteins in Arabidopsis development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Endoplasmic Reticulum , Evolution, Molecular , Genes, Plant , Phylogeny , Gene Expression Regulation, Plant , Genome, Plant
3.
Planta ; 253(1): 19, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33394122

ABSTRACT

In flowering plants, pollen germination on the stigma and pollen tube growth in pistil tissues are critical for sexual plant reproduction, which are involved in the interactions between pollen/pollen tube and pistil tissues. GPI-anchored proteins (GPI-APs) are located on the external surface of the plasma membrane and function in various processes of sexual plant reproduction. The evidences suggest that GPI-APs participate in endosome machinery, Ca2+ oscillations, the development of the transmitting tract, the maintenance of the integrity of pollen tube, the enhancement of interactions of the receptor-like kinase (RLK) and ligand, and guidance of the growth of pollen tube, and so on. In this review, we will summarize the recent progress on the roles of GPI-APs in the interactions between pollen/pollen tube and pistil tissues during pollination, such as pollen germination on the stigma, pollen tube growth in the transmitting tract, pollen tube guidance to the ovule, and pollen tube reception in the embryo sac. We will also discuss the future outlook of GPI-APs in the interactions between pollen/pollen tube and pistil tissues.


Subject(s)
Flowers , GPI-Linked Proteins , Plant Proteins , Pollen Tube , Flowers/metabolism , GPI-Linked Proteins/metabolism , Ovule/metabolism , Plant Proteins/metabolism , Pollen Tube/metabolism , Pollination/physiology , Research/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...